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Abstract

Computer relaying has played an important role in power system protection as
technology advances. Due to the great flexibility of computer-based relays. it will be
applicable to design a general user programmable relay to meet the various relaying
applications in the utilities. The power group in University of Manitoba has successfully
implemented such kind of distance relay prototype based on Digital Signal Processor
(DSP), in which different applications adopted a generic piece of hardware capable of
implementing all of the relaying functions but with a capability to expand as the need
arises. However, the configuration/modification of custom relay algorithms still remain
difficult for the relay engineers since a thorough understanding of C/Assembly language
and hardware knowledge is required.

In this thesis, a Graphical User [ntertace (GUT) for the DSP-based distance relay
was developed, which would assist the relay engineer to design a suitable algorithm for
the application and then configure a general purpose relay hardware to run algorithms.
The key part of the developed Graphical User Interface is a graphical block library of
basic functions for distance relaying. Based on the developed GUI, a Graphical DSP-
based Distance Relay (GDDR) was implemented. [n addition, evaluation of the GDDR
relay performance was carried out using laboratory tests, and the effects of System

[mpedance Ratio (SIR), fault types, and fault location on the fault pick-up time were

investigated.
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Chapter | Introduction

Chapter 1 Introduction

1.1 Computer Relaying
1.1.1 History of Protection Relaying

Protection relaying is widely adopted to ensure the safe and continuous power
supply of a power system in which a fault has developed [1-5]. As an important role in
power protection, protection relaying provides two main functions. Firstly, protective
relaying functions to remove as speedily as possible any section of a power system when
it suffers a short circuit, or when it starts to operate in any abnormal manner that might
cause damage or interfere with the effective operation of the rest of the system. The
secondary function of protective relaying is to provide indication of the location and type
of failure, which may not only assist in expediting repair, but also provide means for
analyzing the effectiveness of the fault prevention.

A protection relay scheme is composed of one relay or a group of relays. The most
typical relay schemes may be sorted into five categories: Overcurrent relay, Directional
relay, Distance relay, Unit protection and Balanced current protection.

The Overcurrent relay, which is widely used on low voltage distribution networks,
operates when the quantity of current exceeds the high set current in the line section
which develops a fault. The Directional relay aims to detect the direction using the

product of the current and voltage, and they usually are used to obtain the

University of Manitoba -1-
Electrical & Computer Engineering
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Chapter | Introduction

directional sensitivity for other relays such as overcurrent and impedance relays. The
Distance relay defines the relays whose response to the input quantities is primarily a
function of the electrical circuit distance between relay location and the point of the fault.
Unit protection protects a system by comparing the current entering and leaving it, which
should be the same under normal condition and during an external fault. Balanced
current protection is the protection scheme for parallel circuits of the same impedance.
Normally, parailel circuits carry an equal current (balanced current), which will change
on the occurrence of a fault on all of the parallel circuits.

Different types of relay hardware have been developed and employed in power
system protection as technology advances. Typically, they may be classified into three
categories according to their nature: Electromechanical Relays, Static Relays and

Computer Relays.

1.1.2 Computer Relays

The field of computer relaying started with relay engineers’ interests in using
digital computers in power system protection. Over the last forty years, computer
relaying has made great strides with the fast improvement of computer techniques, from
the first application using a digital computer in the 19607 to the present microprocessor
based relays. Computer relays are currently playing a major role in power system
protection and the typical architecture of a computer relay is shown in Figure 1.1.

Compared to the other types of relays, computer relays offer the followings advantages.

University of Manitoba -2-
Electrical & Computer Engineering
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Figure 1.1 A Typical Architecture of Computer Relay [5]

e Cost- using a computer relay in some situations will be more cost effective
than the traditional relays.

e Self-Checking and Reliability- this feature provides more ways to test the
relay.

* Functional Flexibility - Relay algorithms can be programmed to perform
several functions to meet the requirements of different protection schemes.
The settings can be adjusted conveniently and promptly because of
programmability and communication capability of the computer based relays.

e Adaptive Relaying - Adaptive features can be added.

Z= | University of Manitoba -3-
\EL_Q.‘ Electricat & Computer Engineering
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Chapter | Introduction

1.1.3 Adaptive relaying

Adaptive protection has been used in power system protection to some extent. Time-
delay overcurrent relays adapt the operating time to fault current magnitude, and
directional relays adapt to the direction of the fault current. However, these are
permanent characteristics of relay systems and are included as part of the original relay
system to perform a pre-defined function. None of these has implemented the adaptive
protection concept in a comprehensive sense as an on-line, real-time tool.

With the development of digital relays, the possibility of using digital techniques to
implement adaptive protection occurred to many researchers. They addressed different
adaptive protection concepts in different perspectives. Horowitz, Phadke and Thorp [6]
described the results of an investigation into the possibilities of using digital techniques
to adapt transmission system protection and make real-time changes. They defined
adaptive protection as “a protection philosophy which permits and seeks to make
adjustments to various protection functions in order to make them more attuned to
prevailing power system conditions™. Jampala, Venkata and Damborg [7] offered a
different description of the concept with a different perspective, which is “ability of the
protection system to automatically alter its operating parameters in response to changing
network conditions to maintain optimal performance”.

There exist two important characteristics in any protection scheme: security and
dependability. Dependability measures the relaying equipment’s ability to correctly clear
a fault while security is a measure of the relaying equipment’s’ tendency not to trip
incorrectly. Once a non-adaptive relaying system has been designed and installed, its

security and dependability are fixed and cannot respond to changing system conditions.

===]] University of Manitoba -4-
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Chapter 1 Introduction

Thus, there is always a compromise between security and dependability for non-adaptive
relaying schemes. On the contrary, adaptive relaying schemes, which make the
adjustment to various protection functions, are capable of improving relaying reliability
and power system security plus achieving other benefits, such as the improvement of
speed and sensitivity to various faults under different conditions without losing

selectivity.

1.2 Background of this work.

Commonly, the design of the relays depends mainly on the manufacturers to meet
the utility relaying problem. Since there are various specific relaying applications in the
utilities, it will be a tendency to design a general user programmable relay and the
configuration/modification of the relays can be easily controlled and mastered by the
utility relay engineers. With the great flexibility of the microprocessor-based relays, this
approach may become a possibility and occurred to many researchers.

Dr. McLaren et al [8] pointed out the concept of “ open™ system relaying and
successfully implement its prototype, in which different applications adopted a generic
piece of hardware capable of implementing all of the relaying functions but with a
capability to expand as the need arises. Based on their work, the power group in ECE
department of University of Manitoba has developed several versions of computer
(DSP)-based distance relays currently called the PT relay for the protection of the power
transmission lines. The PT relay is an adaptive quadrilateral relay and Figure 1.2 shows

the structure of the PT relay [9].

TIAM I U"ive’sny of Manitoba -3-
| S Electrical & Computer Engineering
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Figure 1.2 Schematic diagram of the PT relay system [9]

The algorithms of the PT relay are written in C with embedded Assembly language
to optimize the codes and a typical code section of the PT relay algorithm is shown in
Figure 1.3. With the consistent efforts of numerous researchers, the algorithms of the PT
relay have been greatly improved and verified in either simulation or real-time
environment. The PT relay can also provide good graphic interfaces to display measured
results. However, Its text formatted C/assembly programming still remains difficult for
the utility relay engineers since a thorough understanding of C/Assembly language and

hardware knowledge is required to design the custom relay algorithms.

S ] University of Manitoba -6-
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Figurel.3 A Code Section of PT Relay Algorithm

With the advent of the commercial software RIDE, a graphic user interface may be
possible which would assist the relay engineer to design a suitable algorithm for the
application and then configure a general purpose relay hardware to run such an algorithm.
RIDE is short for “Real-time Integrated Development Environment”. Described as a
superset of the Hypersignal Block Diagram visual environment, it adds support for the
design, implementation and analysis of real-time DSP algorithms and systems. Figure 1.4
shows a typical block diagram application built in the Hypersignal RIDE environment.

By dividing the PT relay algorithm into basic functions and rewriting them

!@ University of Manitoba -7-
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Chapter | Introduction

with block diagram format in the RIDE environment, the configuration of relays may be
implemented by relay engineers with more facility without special computer knowledge.
Thus. it is of interest to investigate the possibility of developing such a programmable

graphic user interface.

Figure 1.4 A Typical Block Interface of RIDE

1.3 Scope of the present work

This thesis aims to develop a Graphical User Interface using Digital Signal Processor
hardware (TMS320C30 DSP board and PC) and commercial software Hypersignal RIDE,

TI compiler and Visual C++. This interface will provide graphical blocks for the basic

University of Manitoba -8-
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relay algorithms, so relay engineers can build their custom relays with more flexibility.

This thesis includes the following works:

L.

!\)

[92)

To develop the ‘windows driver’ program for the TMS320C30 DSP board using
Hypersignal Driver Wizard to set up the communication between the DSP and host
PC.

To build a graphical block diagram library of the basic functions for a distance relay

using Visual C++, TI compiler and Hypersignal RIDE.

. To implement a Graphical DSP-based Distance Relay (GDDR) for the transmission

line protection using the developed Graphical User Interface.

To verify the developed GDDR relay using the power system simulation program
PSCAD/EMTDC and the RTP.

To study the effects of fault location, fault type and System Impedance Ratio (SIR)
on the tripping time using the developed GDDR relay.

To investigate the effects of adaptive relaying using the developed GDDR relay under

different fault conditions.

=) University of Manitoba -9-
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Chapter 2 Development of a graphical DSP-based Distance Relay (GDDR)

Chapter 2 Development of a graphical
DSP-based Distance Relay (GDDR)

2.1 The GDDR relay

The GDDR relay was developed based on the PT (Power Tower) relay originally

designed by the UM power system group. The GDDR relay is designed to protect power

system transmission lines. A typical block diagram for the GDDR relay is shown in

Figure 2.1.
3-Phase Voltage &Current signals
Analog Anti-Aliasing filter
DSP Based Function
Coatrol
Band Pass Digital filter g SiBnals
FFT & DECIMATE
Relay Algorithm m
Calculated
@ Results
Trip Signal

PC Based Function

[nitialization for GDDR

Graphical display for sampled
Voltages&Currents,

Calculated impedance etc.

Figure 2.1 Typical Block Diagram of GDDR relay
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Chapter 2 Development of a graphical DSP-based Distance Relay (GDDR)

2.1.1 Anti-Aliasing Filter

According to sampling theory, the system sampling rate must be greater than twice
the highest frequency in the original analog signal. Otherwise, the original signal can not
be recovered and represented by the sampled data. A low pass filter which removes the
frequencies higher than half the sampling rate is referred to as an anti-aliasing filter.

In this work, the semicondutor chip LTC1602 is employed to impiement the function
of anti-aliasing. The LTC1602 is a 5" order lowpass filter with no DC error. Its unusual
architecture puts the filter outside the DC path so DC offset and low frequency noise
problems are eliminated. In addition, the filter cutoff frequency is set by an internal clock
which can be externally driven, so the anti-aliasing filter’s cut-off frequency can be

adjusted to follow the power system frequency variation.

2.1.2 Analog-to-digital conversion:

To utilize the power of the computer, analog signals obtained have to be converted to
digital signals. The basic conversion scheme for most analog-to-digital conversion is
shown in Figure 2.2(a) [10]. The unknown voltage is connected to one input of an analog
comparator and a time-dependent reference voltage is connected to the second input of
the comparator.

The transfer characteristic of the comparator is shown in Figure 2.2 (b). If the input
voltage V| is greater than V,, the output voltage will be at a positive level corresponding
to a logic "1". If input V; is greater than V), the output voltage will be at a low level,
corresponding to logic "0".

To perform a conversion, the reference voltage V' is varied to determine which of the
2" possible binary words is closest to the unknown voltage V. The reference voltage Vi

can assume 2" different values of the form

T

‘ ;.512‘2.'
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V; Ot -
- P o o — |
Unknown input Va
V‘o__————t. 4
Voo
17T pesesms— va. v v
Camparator Vo =71 v >
Vo ="0" V<V
VR ene— ()"
Comparison {V{-V,l
signat
(a} {b}

Figure 2.2 Analog-to-digital conversion: (a) general scheme; (b) Comparator [10]

Ve=V,d 4,27 (2-1)

i=l
where V) is a dc reference voltage and A/ are binary coefficients. The logic of the A/D
converter attempts to choose the coefficients 4/ so that the difference between the

unknown input ¥, and the set of possible discrete representations of ¥ is a minimum:

error =|V_—V,|= (2-2)

V-V, 3 4,2
=i

2.1.3 Digital Bandpass Filter

Filters are used to pass or attenuate (block) a certain frequency range of a signal and
can be implemented by either analog or digital approaches. Due to advantages such as
software programmability, stability and predictability, no drift with temperature or

humidity and superior performance-to- cost ratio, digital filters are gaining popularity.

a0 ] University of Manitoba -12-
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Chapter 2 Development of a graphical DSP-based Distance Relay (GDDR)

Depending on the frequency range that they either pass or attenuate, filters can be
classified into four types: lowpass filters, high pass filters, bandpass filters(to pass a
certain band of frequencies) and bandstop filters (to attenuate a certain band of
frequencies). Digital filters can also be classified as FIR (finite impulse response) filter
and [IR (infinite impulse response) based on their impulse response, the response of a
filter to an input that is an impulse. The impulse response of FIR filters falls to zero after
a finite amount of time while the response of [IR filters exists indefinitely.

[n this work, although the original analog signals are sampled at one rate for display
purposes, the samples are decimated to a lower sampling rate before being applied to the
relay algorithm. This results in a fast execution time, but may cause an aliasing effect. In
addition, sub-harmonics may exist in the signals. To eliminate the above problems, a

bandpass digital filter was designed and employed.

2.1.4 DFT&FFT

The Discrete Fourier Transform (DFT) is used to obtain the representation of the
finite-length signal (sampled version of the original signal) in the frequency domain,
while the FFT is one of the fast computation methods of implementing multiple DFT. For

a finite length signal x[n] defined over the range O<n<N , the DFT of such a signal is

given by
XK= 3 n] wexp L2
n=0 {
L 20n. . 27 5
= ) * —_ _-3
gov(n] [cos( ~ ) — jsin( ¥ )] (2-3)

For periodic and real signals in a power system, the DFT coefficients XTk] actually

provide the amplitude and phase information of the harmonic components of the
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Chapter 2 Development of a graphical DSP-based Distance Relay (GDDR)

original signals. Therefore, the real part R, (X[k]) and imaginary part /,,(X[k]) of the

DFT coefficients can be shown as the following

R.(XTK]) = Y. x{n]*cos

27kn
=0 ( N )
Lo (XTED = -3, dnl sin¢22D) (2-4)
n=0)

[n terms of the amplitude and phase, these equations can be recast as

|XTk] = (R (XThD) + L, (XTED]2

a1 (XTkD <
Olk]=1tg R(XIKD X[k])] (2-3)

where k is the harmonic number.

The FFT/DFT is a basic for digital relay technique, and the relay algorithms are

achieved after the fundamental components of signals are extracted using DFT/FFT.

2.1.5 Relay Algorithm
The developed relay algorithm is based on the PT relay and includes the following

main functions.

e To calculate the phase-phase/phase-ground impedance

¢ To calculate Direction Impedance (Incremental Positive Sequence Impedance) and
pre-fault Impedance (Load Impedance)

® To determine the fault type and fauit direction

e To adapt the trip zone for the faulted phase

e To send a trip signal if a fault is detected.

University of Manitaba -14-
Electrical & Computer Engineering

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 Development of a graphical DSP-based Distance Relay (GDDR)
2.2 Organization of the Block Diagram for the GDDR relay

To develop a graphical user interface for the GDDR relay using Hypersignal
RIDE, the relay algorithm was divided into individual function blocks to obtain the most
flexible and independent utilization of each block. [n this way, the relay algorithm can be
easily built, configured, modified and executed. According to their functions, the blocks

were assigned into different libraries and groups as listed in Table 2.1.

Table 2.1 Description of Block Function for GDDR

Note: RT.SI and UC represent Real-time, Simulation and User Control block respectively

Group List F “"Cﬁ:"i'sgbl“k) Block Function Description
A/D Functions Daqu Anti_aliasing filter and A/D sampling, RT
DE Direction Element, determine the fault direction. RT
Elements DirLmp Calculate direction impedance, RT
Loadlmp Calculate load impedance, RT
PS Determine fauited phase and fault type, RT
AdapZone Se;t pmeter for'the T_Line protected, adjust the
trip zone if there is a fault, RT
Region TripZone Determine whether the calculated impedance run
into the trip zone, RT
ZoneDis Draw the trip zone and impedance, SI
Relay Type Ground Relay Calculate phase to ground impedance, RT
Phase Relay Calculate phase to phase impedance, RT

Sequence Sequence 120 Calculate sequence components, RT
Arithmetic Incremental Caculator | Calculate the incremental value of input signals,RT

Hierarchy DEC&FFT Composed of Decimate and FFT blocks, RT

Fault Element FltDetect Send a trip signal to serial port if there is a fault, RT
2-channel X Display | Display phase current and voltage, SI
Display Digital Display Display Parameters, SI
XY Display Display trip zone and calculated impedance, SI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 Development of a graphical DSP-based Distance Relav (GDDR)

RT data DSP to PC Upload data to PC
Transter PC to DSP Download data to DSP
User Control Horizontal Slider Slider to visually conirol the parameters, UC

2.3 Creation of custom function blocks using Hypersignal Block Wizard

RIDE provides both the simulation and real-time function libraries, which include
some general function blocks such as Arithmetic blocks etc. These functions are ready to
use and can be easily connected to implement some applications. However, the custom
function blocks of the GDDR relay as described in Section 2.2 have to be created in the
RIDE to implement the relay algorithms. Hypersignal RIDE includes the Block Wizard
which can facilitate the creation of user defined blocks (DLLs) for use within
Hypersignal Block Diagram/RIDE. The following steps briefly illustrate the procedure of
creating such a custom function block.

I. Define the block characteristics using prompted dialog boxes of the Block Wizard.
The main characteristics include the name of the custom block, the name of the
library storing the block, block pattern (Simulation, Real-time or User control), block
type (Input, Output or Process), input/output number and some user defined
parameters. Figure 2.3 shows a typical dialog box of Block Wizard to set the library,

group and menu names for the custom block.

9

Generate Source Code. After all the block characteristics have been defined, the
Block Wizard will create 14 files for a simulation block or 16 files for a real-time

block. These source files are used to set-up the basic code frame of the custom block.
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3. Produce the DLL ﬁle‘ using Microsoft Visual C ++(Version 6.0). This step is the core
part of the process, and it includes editing the source file (Block.C) to add code that
implements the custom block function, compiling and linking the source code to
create the block DLL. For a real-time block, the code to perform a custom function
will be added to the DSP source file (_Block.C). Then, the DSP source file will be
compiled using the TI compiler and the DSP object file with .OBJ extension will be

generated. (Block is the name of the custom block)

Library Name:  |Protection Relays =]
Group Name:  |A/D functions -]

MenuName:  |Daqu
Short Desc: Walog to Digtal conversion

Detaded Description:

This block is used to acquire analog input data. The data is not sampled :]
frame by frame. A moving window method is employed in this A/D block.

LT — , lﬂd,

<Back | Mew> | cancet |  Hep |

Figure 2.3 Dialog box of Block Wizard

4. Add the custom block to Hypersignal RIDE. Copy the generated file Block.DLL
(block is name of new block) and Object file (Real-time block) to the corresponding

directory, then the custom block can be created in RIDE by using the “Add New

niversity of Manitoba -17-

Electrical & Camputer Engineering

LT K

g

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 Development of a graphical DSP-based Distance Relay (GDDR)

Block™ function. The custom block will be located in the library defined in Block
Wizard Dialog Box.
5. Use the custom block. The custom block can be selected using the RIDE Block
Function Selector and be added to the worksheet for use.
[n this work, there are 13 custom function blocks developed for the GDDR relay to
implement the basic relay algorithm. These blocks can be used independently and are
stored into different groups in the library of “Protection Relays™. Details of each block

will be explained in the following section.

2.4 Developed library of graphical blocks for GDDR relay

24.1 A/D block function
The employed A/D hardware is a custom 12-bit analog-to-digital converter with 9

simultaneous sampled independent input channels designed by Mr. E. Dirks, the
technologist in this Department. For the sampling of the original signals, a “moving data
window’” approach is used. After the first sampling cycle, only one new sampled point is
moved into the data window to replace the oldest sampled point. The “moving data
window” is a power system cycle long and is a basic unit for calculation. The use of a
moving window allows for faster detection of a signal change than the cycle by cycle
sampling approach.

Figure 2.4 (a) shows the A/D sampling block interface which was built in
Hypersignal RIDE. It has six outputs: outputs 1-3 are the three phase current signals, and
outputs 4-6 output the three phase voltage signals. The parameter settings interface is

shown in Figure 2.4 (b). Parameter Sampling_Rate is used to set the sampling rate of the
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A/D board, while Framesize determines the number of samples to be acquired and output
to the subsequent blocks. Parameters Gain_Current and Gain_Voltage can be set to adjust

the gain of current and voltage signals sampled.

DU

Daqu Parameters

—'I_)m

.| Name: |SPC30 drv I

25.0 :
Gain_Votage: 300 ~1|
oo DSP #: |1 o
Framesize: N 7] >} : =5
- — B '[NU'A wpt: [Nore ;!

: Syncinc  [None =8
R ‘Synr.Ou: [sceo =] |
e Profle r‘vu . No{ :

L | camd anra ]f'; u'e?bl- J:,; =

(b) Parameter Settings Interface

Figure 2.4 Interface of Analog to Digital Function
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2.4.2 Digital filter function

The digital bandpass filter is employed to remove both low frequency and high
frequency components from the sampled signals. Figure 2.5 (a) displays the block
interface, while the interface for parameter settings supported by RIDE is shown in

Figure 2.5 (b).

(a) Block Interface

L‘vaelxlqnal Fiter Design  [BPFiltes ur]

Fie Hep _ _,

Design | Design Goal | Impuise Aespanse | Frequancy Response | Phase Respanse | Coefficients |
— Fier Parameters- - —Fiker Type - ~Fiter Design————
Sampling Frequency:  [1520 € lowpass | | IRFRas
Bandwidh: .~ |10 | C Bandstop: | | ¢ Buteworth-- | |
TranstionBW1:. -[40 - 1) C Chebyl
Transition BwW2- 6o | Crnebyitc
Stopband Attenuation:  [10 "FIR Flers.
Passband Aol -~ [0 ) Ckae ]
FerOrderk: . I2 | || PaksMcCtan |

ok Cama [ ospm | es |

(b) Parameter Settings Interface

Figure 2.5 Interface of Digital Bandpass Filter Block

To design a digital filter, select Filter Type and Filter Design (IIR or FIR filter)
first. Then, the filter parameters shown in the left side of the box can be set according to

the design requirements. RIDE also provides a testing function for the developed filter.
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Once the design is done, the design goal, impulse response, frequency response and phase
response can be used to check the design and effect of the filter. If necessary, adjustments
can be applied to the filter. In this relay, the centre frequency is 60 Hz, and the other

parameters are set according to the relay requirements.

243 Decimate/FFT block
The DEC&FFT block has two functions: signal decimation, and FFT calculation.

The original signal is sampled at 64 or 32 points per power system cycle for a smooth
waveform display. However, to reduce the execution time of the algorithms, the sampled
signals (64 or 32 samples) will be decimated to 8 samples. The decimated data will then
be processed with a FFT to obtain the fundamental frequency information of the filtered
sampled signals. As shown in Figure 2.6, there are three inputs that can be either voltage
or current signals. The six outputs represent both the real and imaginary parts of the

fundamental components of the input signals respectively.

DU b W N e

Figure 2.6 Interface of Decimate/FFT Block
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2.4.4 Impedance Element

»
»
»
>
»
> B
>
>
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»
»
»

‘.—__—. —
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-
~

—
[

AW b -

T R

(a) Phase Distance Elements  (b) Ground Distance Elements

Figure 2.7 Block Interface of Impedance Element
Function and principle:
The graphical interfaces of the impedance element block are shown in Figure 2.7.
These blocks aim to measure the phase-ground and phase-phase impedance of the
monitored power system. Generally, there exist six impedance measuring elements: three
ground impedance elements for phase to ground faults and three phase impedance

elements for phase to phase fault. The calculations are based on the following equations

(131
. Va
Ground impedance elements: Za=
la +klo
Z2b= i
b+klo
Ve
Ze= <
le+klo
. Vab
Phase impedance elements: Zab=
la—1Ib
Zbe =12
b-Ic
Zea = Vea (2-6)
lc—la
_—II University of Manitoba -22-
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where Va, Vb, V¢, Vab, Vbc, Vca are the measured three phase- ground and
phase-phase voltages at the relay location. la, Ib, Ic are the measured three phase

currents, while [o is the zero sequence current.

Zy =2 - -
The factor & =-2—""Lcompensates for the difference between the positive and
{

zero sequence impedance of the fault loop. Zj, Z;; are the zero sequence and positive
sequence impedance of the protected transmission line respectively.

In 3-pole tripping systems, no element should trip for a fault outside of its
distance zone, while in single pole tripping systems, all elements should only pick up for

their corresponding fault. In practice, more than one impedance distance element may

IMPEDANCES SEEN 8r PHASE RELAYS

DMPEDANCES SEEN Y PHASE RELAYS OURING DURING PHASE -GROUND FAULTS.

PHASE -PHASE FALRTS.

a iy
/ \ 5 ) 34
[’ ﬁ’ ' \ ¥ %
NG T Al | . =
L 52 At
~ /J'
ol — -
[ 8
I
IMPEDANCES SEEN BY GROUND RELAYS IMPEDANCES SEEN
DURING PHASE -PHASE FAULTS. - 8Y GROUND RELAYS (RRING

PHASE -GROUND FAULTS.

Figure 2.8 Typical zones of measurement for the 6 elements of an impedance relay [11]
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pick up for the same fault (as shown in Figure 2.8 [11]), even though they were designed

for different fault types. Therefore, when a single pole tripping scheme is employed, the

phase selection associated with the impedance measurement is required to identify the

fault type and avoid misoperation of the breaker.

Inputs and Outputs:

Inputs for both phase impedance element and ground impedance element are same.
[nputl:
Input2:
[nput3:
[nput4:
[nputs:
Input6:
Input7:
[nput8:
[nput9:

Input!0: The imaginary part of Phase B current.

The real part of Phase A voltage

The imaginary part of Phase A voltage.

The real part of Phase B voltage.

The imaginary part of Phase BE voltage.

The real part of Phase C voltage.

The imaginary part of Phase C voltage.

The real part of Phase A current.

The imaginary part of Phase A current.

The real part of Phase B current.

Input! [: The real part of Phase C current.

Input12: The imaginary part of Phase C current.

Outputs for Ground Impedance Element:

Output!l: Resistance of Za

Ouput2

: Reactance of Za

Output3: Resistance of Zb

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Ouput4: Reactance of Zb

OutputS: Resistance of Zc

Ouput6: Reactance of Zc

QOutputs for Phase Impedance Element:
Outputl: Resistance of Zab.

Ouput2: Reactance of Zab.

Output3: Resistance of Zbc.

Ouput4: Reactance of Zbc.

Output5: Resistance of Zca.

Ouput6: Reactance of Zca.

Parameters Setting:

Figure 2.9 shows the interfaces for the parameter settings. For ground impedance
elements, parameter k is used to compensate for the difference between the positive and
zero sequence impedance of the fault loop. The value of & can be selected and adjusted
according to the properties of the protected line. There is no parameter setting for phase

impedance elements.
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GioundRelay Parameters l

—Driver:

K: -1l ~]

Precision: [Fioat =] Name: Pr0dv =
Board #: r1_—ﬁ
osp: [ 4
interupt:  [Nore =]
Synein: rN_o'ne—-z‘
Syne OQut: INone 'I
| Profle: C Yes & No

K | goeei | o | mew |

(a) Parameter Settings for Ground Element

PhRelay Paiameterss !

N : — Driver

Precision: l‘ﬁoac‘ :] Name:
Boad#: |1 H

oses: [T 4

In(em.p(': None -

Sync in: m

Sync Cut: |None 'l

% Profle:  © Yes & No

oK Concel | i |  Heo |

(b) Parameter Settings for Phase Element

Figure 2.9 Interface of parameter settings for Impedance Element Block
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2.4.5 Load Impedance (LI) Element

Loadimp Pasameters |
Precision: Flaat d
' Name:  [FENEEN ]

oK gancecj lnfa] ﬂebl

(b) Parameter Settings Interface

Figure 2.10 Interface of Load Impedance Element

Function:

The Load Impedance Element provides the pre-fault load impedance that will be
used by the AdapZone block (section 2.4.11) to do the horizontal expansion (Figure
2.10). During a fault, it will provide the relay with the pre-fault load impedance within a

certain period after the fault.
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Inputs and Outputs:

Inputl: The real part of measured impedance (resistance).

Input2: The imaginary part of measured impedance ( reactance).

Output!: The reai part of pre-fault impedance.

Output2: The imaginary part of pre-fault impedance.

Output3: A flag Lig_ig, high level means the validation of the Output! and 2.
Parameter Setting:

There is no parameter setting for this block.

2.4.6 Sequence element

1 » 1
2 » 2
3 » 3
44 > 4
5 » 5
6 » . 6

(a) Block Interface

Sequence Parametess

Precisionc B = _'_I'

gK Cancel | Infa...

(b) Parameter Settings Interface

Figure 2.11 Interface of Sequence Element
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Function and Principle:

The Sequence block shown in Figure 2.11 calculates the sequence components of
the three phase currents or voltages. Normally, a three-phase power system is balanced.
When a fault (except for symmetrical fault) develops, the symmetry of the power system
is broken and unbalanced currents and voltages appear.

Symmetrical component theory provides a method to analyze the fault conditions.
By applying the ‘Principle of Superposition’, any general three-phase system of vectors
may be replaced by three sets of balanced (symmetrical) vectors; two sets are three-phase
but having opposite phase rotation and one set is co-phasal. These vector sets are labeled
the 012 sets and also described as positive, negative and zero sequence sets respectively.

The relationship between phase and sequence quantities of voltage are given

below:

E, I 1 L} E,
E,|= [l & E,
E. | a a |E,
El = -3- 1 a a Eb
E, 1l a> a || E.
Where a= —-—1-+j£
2 2
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Similarly, the relationship between phase and sequence current can be obtained as

following
1, I 1 11,
I, = |l & I,
I. l a a*|lI,
(2-8)
I, L1 17,
I, =é l a a1,
I, I et a1

The positive sequence components of voltage and current are used by the DI
block (section 2.4.7) to calculate the incremental positive sequence impedance, and the

zero sequence current will be used by the PS block (section 2.4.9).

Inputs and Outputs:

Inputl, 2: Phase A voltage or current ( Real and Imaginary part)
Input3, 4: Phase B voltage or current (Real and Imaginary part)
Input5, 6: Phase C voltage or current (Real and Imaginary part)
Outputl, 2: Positive sequence voltage (Real and Imaginary part).
Output3, 4: Negative sequence voltage (Real and [maginary part).
Outputs, 6: Zero sequence voltage (Real and Imaginary part).
Parameters Setting:

There is no parameter setting in this block.
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2.4.7 Directional Impedance (DI) Element

™

L

(a) Block Interface

Dulmp Parameters
—Driver

| set ﬁ v
’ '-I Name: ISPC30.dN 'I

Precision: IF!oak _:] Board & [1____. ﬁ
ospe: [ o
mempt [iore <]
Sync In: m
Sync OQut: I None - l

Profile: C Yes & No

K | s | o | b |

(b) Parameter Setting Interface

Figure 2.12 Interface of Direction Impedance Element

Function and principle:

The Direction Impedance block as shown in Figure 2.12 is programmed to
calculate the directional impedance, which will be used by the block DE (directional
element, section 2.4.8) to determine whether the fault is a forward or reverse fault. The
Positive Sequence Incremental Impedance (PSII) AZ, is selected to be the target
directional impedance because of both convergence and its availability in various fault

situations [12].
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For a forward fault, in a single transmission line system, AZ=-Z,, where Z; is the
positive sequence impedance from the relay busbar to the source E,. For a reverse fault,
on the same line, AZ,=Z,, where Z, is the positive sequence impedance from the relay
point to the remote source Eg’ [13].

The inputs to this block are the incremental positive sequence voltage and current,
which represent the difference between the positive sequence voltage and current of the
present cycle and that of several cycles ago. When a fault occurs in the system,
incremental positive sequence current Al is detected and compared to the pre-set value.
[f |AL| exceeds the pre-set value of the parameter (I-set), the Lp; will be set to logic | and
AZ; will be calculated. Otherwise, no calculation will be done.

Inputs and Outputs:

Inputl: The real part of incremental positive sequence voltage.

Input2: The imaginary part of incremental positive sequence voltage.

Input3: The real part of incremental positive sequence current.

Input4: The imaginary part of incremental positive sequence current.
Outputl: The real part of incremental positive impedance AZ,
Output2: The imaginary part of incremental positive impedance AZ,
Output3: logic output Lp;, that determines whether AZ; is valid. If Lp; is high,
AZ, is true.
Parameters Setting:
[ set: The pre-setting value of incremental positive current based on the protected

system. The incremental positive sequence impedance will be calculated only if the

measured incremental positive sequence current exceeds this pre-setting value.
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2.4.8 Direction Element (DE)

(a) Block Interface

DE Paramerers

— Driver

ol ey Name:  [5PC0aY =]
X300 | vi:Joo ¢ Board #: |1 j
x2[500 v] v2[508 ] DSP #:

interrupt: None

20.0 I-SU.O
X3 AR £ ;‘ Syncln: |None 'l
Precision: Float .~ . Sync Out- I None 'l »

' Pm(ig ('Yet f'Na;:.

LR

u._

(b) Parameter Settings Interface

Figure 2.13 Interface of Direction Element

Function and Principle:

The Direction Element shown in Figure 2.13 determines the direction of the fault,
and its inputs are the three outputs of the DI element (section 2.4.7). The DE block will
function based on the logic level of the input Lp;.. A Logic 1 (high) of Lp;, will enable the

DE block, and the AZ, will be compared with a pre-set zone as shown in Figure 2.14. If
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the AZ | is inside the zone, the fault is a forward fault and a logic 1 will be output. On the

contrary, if AZ ; is outside the zone, a reverse fault is indicated and the output will be 0.

XY, Xo.Yy

Xg, ‘[— > X_"? Y’}

Figure 2.14 Typical Pre-set Zone of DE Element

Inputs and Qutputs:

Inputl: Lp;, the outputl of DI element.

Input2: Real part of the Incremental positive impedance AZ | ( the output2 of DI
element).

[nput3: Imaginary part of the Incremental positive impedance AZ ; ( the output3 of DI
element ).

Output: Logic signal Dir, high level (1) indicates a forward fault and Low Level (0)
indicates a reversé fault.

Parameter Setting:

Parameters Xy, Yo, X1, Y1, X5, Y3, X3, Y3 are the coordinates of the pre-set zone,

which are determined by the protected power system.
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2.4.9 Phase Selection (PS) Element

U b N

(a) Block Interface

PS Parameters ‘
—Driver-
Name: l SPC30.div « l
Precisior: | Float = -
Boad#: |1 _—,_1

psP#: i 5|
inerupt:  [Nore v
Sync in: m
smcQue [iom =]

Profie: C Yes @ No

A2 1

K | cocet | o | Heo |

(b) Parameter Settings [nterface

Figure 2.15 Interface of Phase Selection Block

Function and principle:

The Phase Selection element shown in Figure 2.15 aims to decide which
measured impedance represents the impedance in the fault loop, and therefore to
determine the fault type. The ratios of the phase to phase current with the combination of
zero sequence current under different fault conditions are shown in Table 2.2. The

algorithm of the Phase Selection element is derived from these ratios [9].
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Table 2.2 The Ratio of the Incremental Phase to Phase Current [9]

Fault Io Db o) Dy Dyc2 Dy D2
AG >0 0 oo oo 0 1
BG >0 0 l 0 oo oo
CG >0 o0 oo 0 1 l 0
AB 0.5 0.5 2 L l 2
BC L 2 0.5 0.5 2 |
CA 2 L 1 2 0.5 0.5

ABG >0 (0.5,1) (0.5,1) (1,2) 1 l (1,2)

BCG >0 l (4,2) (0.5,1) 0.5,1) (1,2) I

CAG >0 (L,2) l l (L,2) (0.5.1) (0.5,1)

ABC 0 I 1 l 1 1 1

Where (Dbct=i\[[ib1:_-{ s Ppcr= ZZ: »(Dabl:%]l » @op2= il[zz Peai= %[:;C;' , 4%?%3 )

and Al, Alge, Al, are incremental phase to phase currents. The PS element has four

current related inputs and six outputs representing six phase selection flags: S,, Sp, Sc, Sab,

.Sbe, Sca- These flags will be set according to the fault type, which is tabulated in Table

2.3.

Table 2.3 Setting of Phase Selection Flags (for typical fault conditions)

Fault S, Sp Sc Sab Sbe Sca
AG 1 0 0 0 0
BC 0 0 0 1 0
BCG 0 l I 0 1 0
ABC 1 1 1 1 l l
<3| University of Manitoba -36-
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Inputs and Outputs:

[nputl: Amplitude of incremental phase A to B current ( |ALp} )
[nput2: Amplitude of incremental phase B to C current ( |Al| )
[nput3: Amplitude of incremental phase C to A current ( [ALp| )
[nput4: Amplitude of zero sequence current ( [[p| )

Outputl: Phase selection flag S,

Output2: Phase selection flag Sy

Output3: Phase selection flag S

Output4: Phase selection flag S,

Qutput5: Phase selection flag Sy

Output6: Phase selection flag Sc,

Parameters Setting:

The parameter ‘I_preset’ is a preset current value. The PS element will run only
when the amplitude of the incremental phase to phase currents is greater than this preset
current value. For different transmission line systems, this parameter should be chosen

differently.
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2.4.10 Incremental Calculator Block

\d

(a) Block Interface

DeitaValue Parameters i
Precisior: [F’or:t _*'J
Name: EZL,U Bj 'I !
Board #: 1 -

e

pspa: i =
interupt:  [None ]
i SyneInc m
SmcOw [Nore =]

| Profle. € Yes G No |

R

oK ool [ o | pew |

(b) Parameter Settings Interface

Figure 2. 16 Interface of Incremental Calculator

Function:
The Incremental Calculator block (Figure 2.16) calculates the incremental value
of the input signals which can be either a real value or a complex value. In the GDDR

relay, it is used to calculate the incremental positive sequence voltages and currents.
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Inputs and Outputs:

Inputl: Signal | to be calculated.

Input2: Signal 2 to be calculated.

Outputl: Incremental Value of input signal 1.
Output2: Incremental Value of input signal 2.
Parameters Setting:

There are no parameters setting for this block.

2.4.11 Adaptive Zone Block

1 »
2 b
»
Jb I
1.
I >
6 »|§

Figure 2.17 Interface of Adaptive Zone Block

Function and Principle:

The function of the Adaptive Zone block shown in Figure 2.17 is to adapt the
protection zone to obtain a better setting for the present condition of the protected system
during a fault. In this situation, the relay can operate faster and be attuned to the fault
direction. The algorithm flowchart of the Adaptive Zone block is depicted by Figure 2.18.

To implement the adaptive function, horizontal and vertical expansion of the trip
zone will be performed separately based on their own embedded logic conditions during
a fault [9]. If the conditions for horizontal expansion are satisfied, the trip zone is

expanded in both directions along the R axis shown in Figure 2.19. The amount of
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expansion can also be controlled. Likewise, if the conditions for vertical expansion are
met, the trip zone will be expanded vertically. The fault direction will determine the
mode of the vertical expansion. Figure 2.20 illustrates the typical vertical expansions

under both forward and reverse fault.

( Start
__< Adaptive?

D
>
No Yes
Horizon
< Expansnon’ > |

Modify the zone horizontally

Vertic
Expansxon"

Modify the zone vertically

Output the coordinates
Of the trip zone

( End)

Figure 2.18 Flowchart of the Adaptive Function
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(a) Logic Selection for Horizontal Expansion

(b) Typical Horizontal Expansion of Trip Zone

Figure 2.19 Horizontal Expansion of Adaptive Function

When there is a forward fault, the relay will expand its protection in both the

horizontal and vertical direction. The benefit of this is that the near zero impedance of the

close-up forward fault is well inside the trip zone as opposed to being on the boundary of

outside the trip zone.

the prefault zone. However, during a reverse fault, only the vertical expansion will be
employed. The benefit is that the near zero impedance of the close-up reverse fault is well

University of Manitoba
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Vertical Expansion

(a) Logic Selection for Vertical Expansion

(b) Typical Vertical Expansion of Trip Zone
Left: Forward Fault Condition; Right: Reverse Fault Condition

Figure 2.20 Vertical Expansion of Adaptive Function

The expansion of trip zones has several advantages. Firstly, it provides a larger
trip zone for the forward fault which enhances its identifying ability during a forward
fault and reduces its misoperation opportunities during a reverse fault. Secondly, it offers
the possibility of quicker location of the fault, since the measured impedance can more

quickly enter into the expanded trip zone than that of the prefault trip zone.
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Inputs and Outputs:

Inputl— Zld_Re, the resistance of load impedance

[nput2—Zdir_Im, the reactance of incremental positive impedance

[nput3—Dir (output of DE element)

Input4 —Lp;(Output3 of DI element)

[nput5 —Li4_1g (Output3 of LI element)

Input6 —Sqo (P is a, b, ¢, ab, bc or ca)

Input7 —PTmode, which is used to disable or enable the vertical modification of
the protection zone and its value. [t is determined by the setting of the
relay.

Outputl —coordinates of expanded trip zone: X, Yo, Xi, Y1, X5, Ys, X3, Y3

Parameter Settings: (Shown in Figure 2.21)
1. The protected transmission line impedance, PT &CT ratio and relay reach can be set

in the ‘system setting” group.

N

There are two relay types available: A PT_relay or a mho_relay. If ‘mho_relay’ is
chosen, set its offset in the ‘setting for mho relay’ group. If ‘PT_relay’ is selected, its
corresponding offsets need to be set in the ‘setting for PT relay’ group. These
parameters will determine the prefault zone according to the protected line

If the ‘adaptive’ item is selected, the adaptive feature will be employed. Otherwise,

(V3]

the pre-set values (coordinates of four points which define the zone) will be fixed.
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4. If the adaptive function is selected, set the preferable value of parameter “Adaptive

K™ The “Adaptive K” will determine how much the zone will be expanded.

~ System Setting: " Relay Type:
1
Transmission Line Impedance: @ PT Relay ¢ mho Relay

5 «+ifazs5 ohml
. PT_Rato: [10 __| — Setting for mho relay:

CT_Ratio: [0 _I
RelayReach: [B00 x| mho Offet [0 _ |

— Setting for PT relay: —Driver

PT_Offsett: [0.83021 _ | Name:  [SPCI0dv <]
PT_Osez [042105 _ | Boadt: |1 5|
PT_Offset3:  [035473 _| psp#: 1 5

PT_Offsatd:  [051555 _ Iterrupt: [ None -

PT_QOftfset5- I‘l,D —J Syne Inc INone vl |
Adaptive: & Yes ¢ No Sync Out INone vl -

Adaptive K: |1_D [0'1]' -1 Profle: C Yes & No

o | Cancel | .. | heb [

LN (4

L2 U

Figure 2.21 Interface for Parameter Settings of Adaptive Zone Block
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2.4.12 TripZone Block

(a) Block Interface

RT2Inside Parameterss '
—Driver

Precision: {Slaat 1

Name:  [HEEREERENN ~ ]
Boad#: [T 3
ospe: [
S
Sync Inc m
S;ncOut [Nore ]

Profile: C Yes @& No

K | Cowcd | _wo | b |

(b) Parameter Settings [nterface

Figure 2.22 Interface of TripZone Block

Function:

The TripZone block as shown in Figure 2.22 will determine whether the
impedance measured by the Phase or Ground Distance Elements is within the adapted
protection zone. If the measured impedance falls within the trip zone, this block will

output a logic 1. Otherwise, a logic 0 will be output.
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Input and output:

Inputl: The coordinates of the modiﬁeci protection zone.
[nput2: The resistance of the measured impedance.
[nput3: The reactance of the measured impedance.
Output: The logic trip signal, eithera O or 1.

Setting of Parameters:

There is no parameter setting for this block

2.4.13 Fault Detection Block

AW N =
YYYYYY

(a) Block Interface

FitDetect Parameters q
_ ~Driver
Precision: fFloat 4|
Name:  [FERRENENN =]
Boad#t: |1 +

L]

pspe: [T
Interrupt: None -

Syncin: m
Sync Uu: I None - I

Profie: € Yes & No

oK Corcel | 1. | Hew |

(b) Parameter Settings Interface

Figure 2.23 Interface of Fault Detection Block

===) University of Manitoba
ooV Elmctricat & Computer Engineering

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~46-



Chapter 2 Development of a graphical DSP-based Distance Relay (GDDR)

Function:

The ‘Fault Detection’ block as shown in Figure 2.23 will decide whether or not to
generate a trip signal based on the outputs from both the TripZone blocks and the Phase
Selection element. If the fault conditions are detected, the Fault Detection block will send
a logic high signal to serial ports which will be used as the trip of the breaker. It can also
be used for relay algorithm testing such as whether the relay algorithm can find the fault,
how long it will take the algorithm to locate the fault and so forth.

Inputs and Outputs:

Inputl: Logic AND of TripZone Output with Phase Selection Outputl (Relay A).
Input2: Logic AND of TripZone Output with Phase Selection Output2 (Relay B).
[nput3: Logic AND of TripZone Output with Phase Selection Output3 (Relay C).
[nput4: Logic AND of TripZone Output with Phase Selection Output4 (Relay AB).
[nputS: Logic AND of TripZone Output with Phase Selection Output5 (Relay BC).

Input6: Logic AND of TripZone Output with Phase Selection Output6 (Relay CA).

Parameters Setting:

There is no parameter setting for this block.
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2.5 Implementation of the GDDR relay

Based on the developed graphical block library and the libraries provided by
Hypersignal RIDE, the following steps are adopted to design a typical Graphical DSP-

based Distance Relay (GDDR) for the transmissions line protection.

e Setup of the GDDR relay Block Diagram

Three steps were carried out to create the block diagram of the GDDR relay in the
Hypersignal RIDE environment.
Stepl: Opened a new worksheet in Hypersignal RIDE
Step2: Selected the function blocks according to the relay algorithm and placed them on
this worksheet.
Step3: Connected the function blocks. The block’s input/output terminals are the bridges
tor the connection. “Connecting” blocks is referred to as a process of establishing the
Data Flow Relationship among blocks by joining up their inputs/outputs.

The developed block diagram of the GDDR relay is composed of the Block Core
and Display/Control interface as shown in Figure 2.24 and Figure 2.25. The Block Core
includes the function blocks employed in the GDDR relay and their connection
relationships. The Display/Control interface consists of both display and user control
sections. The display section shows the instantaneous values of three-phase voltage and
current waveforms, fault direction selection as well as the six graphical protection zones
of the impedance elements. The PT ratio, CT ratio and other pre-set parameters used for

calculation can be set in the control section.
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e Configuration
The configuration of the GDDR relay includes:
[. Set the parameters in AdapZone Block. L.E. input the Transmission Line protected
impedance, and select the trip zone and other parameters as described in Section

2.4.11.

[N

Set Zone parameters in DE block as described in Section2.4.8

(93]

Set parameters in Dirlmp and PS as illustrated in Section2.4.7 and Section2.4.8.
4. Set sampling rate, framesize, Gain_Current and Gain_Voltage in A/D sampling
block as illustrated in Section 2.4.1.
e Compilation and Execution of GDDR relay
The GDDR relay can be executed in the Hypersignal RIDE environment after it is
compiled by selecting the Compile Command of Hypersignal RIDE.
e Generation of stand-alone application
After the relay algorithm is verified, the GDDR relay can be exported to a
standard COFF file for use with an embedded DSP through Hypersignal RIDE’s export

capability and Hyperception Application Interface (HAPPI) product.
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Graphical DSP Based Distance Relay

Figure 2.25 Display/Control Interface of the Developed GDDR relay
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Chapter 3 Testing of Graphical DSP-based
Distance Relay

3.1 Lab Set-up for GDDR Testing
To evaluate the performance of the developed GDDR relay, a lab set-up was
displayed in Figure3.1. Its schematic diagram is shown in Figure 3.2.

: 3@ Current/Voltage
PSCAIY | it |
EMTIX | —4

Figure 3.2 Schematic Diagram of Lab Set-up
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3.1.1 PSCAD/EMTDC software package.

PSCAD/EMTDC V3.0 is a MS windows operating system based Application
package developed by the Manitoba HVDC Research Center. It is a simulator for electric
circuits used in low voltage power electronics systems, high voltage DC transmission
(HVDC) and flexible AC transmission systems (FACTS), as well as distribution systems
and complex controllers. In this work, it was used extensively to simulate a power system
and generate the fault waveforms used by Playback (RTP).

3.1.2 Real time playback simulator

The Real Time Playback (RTP) developed by the Power group and Manitoba
HVDC Research Centre is a computer based waveform playback system with 12 analog
outputs and 16 logic inputs/outputs. Best described as an arbitrary waveform generator,
the RTP can replay any waveform generated by PSCAD/EMTDC for testing protection,
control or measurement system. [n addition, the RTP can generate practical analog
signals from on-line recorded data files or created by the RTP STATE program. The RTP
has an advanced graphical interface for displaying and controlling waveforms and a
Batch playback mode for automated testing. In this work, the RTP was employed to feed

the analog signals into the developed GDDR relay.

3.1.3 Testing procedure
The procedure for testing the GDDR relay is described as follows:
L. A practical single transmission line system case is simulated in PSCAD/EMTDC.
The waveforms generated by PSCAD/EMTDC under different operation

conditions are stored in data files.
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8

The data files obtained from PSCAD/EMTDC will be loaded by the RTP (Real-
time Playback) software. The PC running RTP will output the simulated current
and voltage signals to the developed GDDR relay. In addition, the logic signals
set by the customer can be output at the same time.

The three phase voitage and current signals are then sampled and processed by the

(93]

developed GDDR relay running in both the PC and DSP. The PC displays the
instantaneous values of the three phase current and voltage signals, calculated
apparent impedance and their locations in the impedance planes, while the DSP
runs the relay algorithms and monitors the system status. [f there is a fauit in the
system, the fault type will be determined and a logic signal representing the trip
signal will be generated.

4. This generated logic output signal is sent to either the DSA (Digitizing Signal
Analyzer) or the RTP to monitor the interval between the fault start instant and

the trip instant. (i.e. operating time offered by the developed GDDR relay).

3.2 Simulation case and fault waveforms
A typical power system with one transmission line connecting two sources is

simulated in PSCAD/EMTDC as shown in Figure 3.3.

Z;=0.035+j0.47 ohm/km

e v}

Relay

E,'=230kV

Es=230kV Z;=8.03+j42.28

Figure 3.3 PSCAD/EMTDC Simulation System
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All typical fault types were simulated and run in PSCAD/EMTDC. Figures 3.4
(a), (b), (c) and (d) show the typical voltage and current waveforms under AG, BC, BCG

and ABCG fault conditions.
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(c) BCG fault (d) ABCG fault

Figure 3.4 AG, BC, BCG, ABCG fault current and voltage waveforms
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The RTP reads the data files generated from the PSCAD/EMTDC software and
outputs the corresponding analog voltage and current signals. The typical interface of the

RTP with waveform to be displayed is shown in Figure 3.5.

(b) 3P current waveform

Figure 3.5 Real Time Playback interface
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Chapter 3 Testing of Graphical DSP-based Distance Relay

3.3 Testing Results

All the real-time and simulation blocks (section 2.3) developed for the GDDR
relay have been tested individually in the Hypersignal RIDE environment using software
methods. The following testing was performed to evaluate the GDDR relay as an

integrated unit.

3.3.1 Fault Phase selection test

Different fault conditions were simulated in PSCAD/EMTDC, and the waveforms
generated were applied to the GDDR using the RTP simulator. The comparison between
applied faults and the fault types determined by the GDDR relay is shown in Table 3.1.
These results show that the phase selection element is capable of picking up the faulted

phases and can identify the fault type under all fault condition tested.

Table 3.1 Verification results of phase selection
Fautp<| - LogicOutputof GDDR Relay Phase Sclection Element: . -,
Applied| S, | Sy |8 | Sa - o Sken- |0 San
AG | I 0 — o0 | o | o
-BG ;- 0 t 0 0 0
cG | o0 0 1 0 0 0
AB" 0 0 0 l 0 0
BC 0 0 0 0 1 0
- CA 0 0 0 0 0 1
ABG| 1 1 0 i 0 0
BCG. - 0 1 1 0 0
, CAG 1 0 1 0 0 1
ABCG 1 1 1 L 1
Note: S,, Sb, Sc, Sab, See, Sca (see section 2.3 for explanation)
==] University of Manitoba -57-

‘ Cee P

Electrical & Computer Engineering

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 Testing of Graphical DSP-based Distance Relav

3.3.2 Determination of fault direction test

Both forward faults (fault at location Frin Figure 3.3) and reverse faults (fault at
location F; in Figure 3.3) were simulated and tested. The output of the DE (Direction
Element) of the GDDR was programmed to monitor these conditions: a logic “1” for a
forward fault, and a logic “0” for a reverse fault. In the test, the DE element will always
give the proper logic output value as shown in Figure 3.6. This verifies that the GDDR

relay can determine the fault direction accurately.

Fault Direction Fault Direction

(a) Forward fault applied (b) Reverse fault applied

Figure 3.6 Test results of fault direction

3.3.3 Effects of fault location, fault type, SIR (System impedance ratio) and adaptive

relaying

Fault pick up time, (i.e. operating time of the relay) is a big concemn for any relay
system developed. In this work, typical fault types, fault locations as well as the SIR ratio
are employed to simulate various power system conditions. All of the voltage and current
waveforms under these conditions were applied to the developed GDDR relay to study
their effects on the operation time. Since the execution time of the relay algorithm with
real-time display is approximately 4ms, for faults which occur at the same point of wave,

there is a time differential (min/max operating time) depending on the point within the
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algorithm when the fault occurs. [n addition, the effect of adaptive relaying on the

operation time was investigated.

e SIR=0.01

Figures 3.7, 3.8, 3.9 and 3.10 illustrate the relationship between operation time
and fault position (p.u. relay setting) with a SIR (System impedance ratio) of 0.01. [n
Figure 3.7 (a), it can be seen that minimum operating time becomes longer when the
distance to the fault location increases and the adaptive function is not active; However,
with the adaptive function enabled, the minimum operating time is less sensitive to the
change of fault locations. Also, the operation time with the adaptive function enabled is
less than that without the adaptive function and the time difference ranges from 4 to 8.75
ms. Similar results are illustrated in figures 3.8 (a), 3.9(a), 3.10 (a) which represent the

operating time for BCG, BC, ABCG faults respectively.

AG Fauit with SIR of 001 AG Fault with SIR of Q01
=D £
|- -
E g
§ © ,_..———-4——/‘ 5 10
E 5 —e—Adp_Mn i 5 —— Adp_Max
g' —a—Non_Mn Q ~a— Non_Max|
0 0
0 -] 0 €0 2] 100 o 2 4 €0 & 100
Fauit Position (p.u. Relay ssting) Faug Foaition (.. Reley setting)
(a) Minimum Operating time (b) Maximum Operating time
Figure 3.7 Operating time vs. Fault location of AG fault (SIR =0.01)
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Figures 3.7(b), 3.8(b), 3.9(b) and 3.10 (b) show the maximum operating times vs.
tault location with adaptive function enabled or disabled under AG, BC, BCG and ABCG
fault conditions. A slightly different result is illustrated in these results and the time
difference with or without the adaptive function is less than that of the minimum
operating time. However, the adaptive function still shows the effect of decreasing the

operating time under most circumstances.

BCG Fauit with SIR of Q01 BCG Fault with SIR of 01

16 2
= 14 —~
En Eis
g1 2 * *
z8 . — g0
Esl ~ §
i 1 —~o—ACP_Mn i 5 —e—Ap_Max
Q 3 —a—Non_Mn o —a—Nan_Max

o
0 2 %@ ) 0 100 0 20 10 60 a0 100
Fault Postion (pu. Reley setting) Fault Position (pu. Reley setting)
(a) Minimum Operating time (b) Maximum Operating time

Figure 3.8 Operating time vs. Fault location of BCG fault (SIR=0.01)

BC Fakt with SIR of Q01 BC Fauit with SIR of Q01
16 2
~ 14 _
:E" o ./__/—_‘ é 15
-] ]0 o
£ E .;.4‘5-":‘: : :
= 8 =
; 2 o -~ / s 0
'g 4 —e—Ap_Mn S5 —e—Acp_Max
(=] (2) ~@—Non_Mn- g —e— Non_Max
0
0 2 @ 60 80 100 0 20 %« 60 ) 100
Fault Position (a.u. Reley setting) Faut Position (pu. Rlay setting)
(a) Minimum Operating time (b) Maximum Operating time

Figure 3.9 Operating time vs. Fault location of BC fault (SIR=0.01)
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ABCG Fault with SIR of A0t ABCG Fauit with SIR of .01

14 2
g '—'/.————'——l -
Ewo g .//o———.——————"’"'
£8 /——*——/ éxo — o
5§68 s
s 4 —e— Adp_Mn P —e—Adp_Max
g, g
(<) —a—Non_Mn o —a—Non_Max

1] Q

[v] 2 40 &0 a0 100 0 20 40 &0 an 100
fam Position (au. Reisy setting) Faukt Position (pu. Reley setting)
(a) Minimum Operating time (b) Maximum Operating time
Figure 3.10 Operating time vs. Fault location of ABCG fault (SIR=0.01)
e SIR=0.1

The results for operating time versus fault location with a SIR of 0.1 are shown in
figures 3.11-3.14. As before, the curves representing the minimum operation time shows
that the adaptive function can reduce the operation time effectively, and the fault location
has less effect on operation time with adaptive function active than that without it.
According to the fault type, the curve tendency differs slightly from the others. The
differences of maximum operating time between adaptive and non adaptive function is

smaller compared with that of the minimum operating time.
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AG Fast with SRof 0.1 AG Fauit with SR of 0.1
2 =

g 15 //. ém M
g g5
g 0 ’__—_‘,____.-—r———"/ § 10
s 3 ——Ap_Mn ‘i 5 —o—Ap_iix
5‘ 0 -e—Non_Mn ° 4 —a— Non_Max

4} 20 40 60 a0 100 [0} =] 40 &0 80 100

(a) Minimum Operating time {b) Maximum Operating time

Figure 3.11 Operating time vs. Fault location of AG fault (SIR=0.1)
BCG Faft with SIRof 0.1 BCG Fault with SRof Q.1
15 2

z .’,’,//'—' Es ,k,,,/_"’*/
o 10
£ g = -
b *‘__/4———"_——* zw
2 s S
s —e—Adp_Mn €5 —e—Adp_Nax
<§' o —a—Non_Mn 6‘ 0 —a— Non_Max

0 20 40 o] 80 100 [} p-o} 40 60 a0 100

Fault Position (pis Fetey setting) Fault Position (pu. Reley setting
(a) Minimum Operating time {b) Maximum Operating time
Figure 3.12 Operating time vs. Fault location of BCG fault (SIR=0.1)
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BC Fault with SRof 0.1 BCFalt withSIRot Q.1
20 >
Eis E»
g s
=10 -
H -— . e S0
s 5 - ——Ad_Ma s —e—Acp_Max
é 0 ~a—Non_Mn é 0 -8—Non_Max
0 20 40 0 a0 100 o 2 ) &0 80 100
Feult Position (p.u. Reiey setting) Fault Fosition (p.u. Reley setting)
(a) Minimum Operating time (b) Maximum Operating time

Figure 3.13 Operating time vs. Fault location of BC fault (SIR=0.1)

ABCG Fadt with SR of 0.1 ABCG Fautt with SIR of 0.1
16 2
o 14 -
2, ._,—/——0———‘ g .’___/_,.————0——4
210
=
i 8 .__A 510 .—_——/_—a\’
§s 5
g 4 ——Ap_Mn s ——Adp_Mix
52 —e—Non_Mn & . —a—Non_Max:
0 ) 40 &0 0 100 0 P ") 80 % 100
Faut Fosition (. Reisy setting Fat Position (p.u. Reiey setting)

(2) Minimum Operating time (b) Maximum Operating time

Figure 3.14 Operating time vs. Fault location of ABCG fault (SIR=0.1)
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e SIR=1
AG Fadt with SRof 1 AGFast with SRof 1
25 )
g 20 =
§ {s) /__.____——0\*____—0 5 10 el - /
= ——Ap_Mn s 5 —o— Adp_Max
§ —e—Non_Mn é’ o —8—Non_Max|
) 20 a0 60 %0 100 ) 20 a0 60 a 100
Faust Position (p.u. Asiey setting) Faut Position (p.u. Reley setting)
(a) Minimum Operating time (b) Maximum Operating time

Figure 3.15 Operating time vs. Fault location of AG fault (SIR=1)

B80G Fault with SRof 1 BOG Fault with SR of 1
) s
T )
Eis EX 14/.__/'
e ] e
g g1
® 5 —e—Adp_Mn s —e—Adp_Max
CS; 0 —a—Non_Mn: é 0 —a—Non_Max
0 2 40 60 80 100 0 2 40 & a0 100
Faust Position (pu. Reley setting) Fask Position (R.u. Reley setting)
{a) Minimum Operating time {b) Maximum Operating time

Figure 3.16 Operating time vs. Fault location of BCG fault (SIR=1)
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Opeiation lime (ms)

Operation time (ms)

Figures 3.15, 3.16, 3
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—
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-
o

(4]

o

2 40 80 80
Fault Position (pu. Reley setting)

100

(a) Minimum Operating time

Operation lime (ms)
8 & 8B R

BCFault with SR of 1

—e—Adp_Max
-a—Non_Max

20 0 9] 80
Feukt Position (p.u. Reley setting

100

(b) Maximum Operating time

Figure 3.17 Operating time vs. Fault location of BC fault (SIR=1)

ABCG Fausit with SR of 1

—a—Non_Mn

[=]

20 40 60 80
Fauit Positian (p.u. Feisy setting)

100

(a) Minimum Operating time

B

-
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-
(=]

Opecation time {ms)

(4}

Q

—eo—Adp_Max
—a— Non_Max

o

20 40 a0
Fault Postion (pu. Reley setting)

0 100

(b) Maximum Operating time

Figure 3.18 Operating time vs. Fault location of ABCG fault (SIR=1)

.17 and 3.18 display the results of the relationship between

operating time and fauit location with a SIR of 1. When adaptive function is enabled,

both the minimum and maximum operating times increase with the fault location. If

adaptive function is enabled, the operating time became less sensitive to the fault location

and is much faster than that without using the adaptive function. Apparent gaps of 4 to 8

ms were observed for both maximum and minimum operating times.
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e SIR=10
AG Fattwith SRof 10 AGFahtwith SRof 10
25 k4]
Eo| " E> —————t
E 15 E 20 .——/
z 0 e R g 15
2 -— — > = 10
s 5 —o—Adp_Mn s - —o— Adp_Max
& . —o—Non_Mn & ; —e—Non_Max
0 20 40 ) a 100 0 20 0 & ) 100
Fait Position (pu. Retey setting) Feult Position (pu. Relay setting
(2) Minimum Operating time (b) Maximum Operating time
Figure 3.19 Operating time vs. Fault location of AG fault (SIR=10)
BCG Fault with SRot 10 B0G Fautt with SRof 10
20 5
é 15 -g— 2 _’_’/i_—'—k/.
g sl e 3 —
= 10 =
5 — - / §w0
s 5 —o—Agp_Mn s 5 —o—Adp_Max
é’ 0 -a—Non_Mn: 3- o —a— Non_Max
o 2 % 0 80 100 0 0 0 ') a 100
Fault Position (au. Relay setting) Fault Pasition (p.u. Ryiey setting)
(a) Minimum Operating time (b) Maximum Operating time

Figure 3.20 Operating time vs. Fault location of BCG fault (SIR=10)
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BC Fast with SRof 10 BCFault with SRof 10
25 0
7y [ E— =l .
215 . L e ~ .
= — - =15
510 s
= = 10
= . —e—Agp_Mn s s ——Acp_Max
é 0 —a—Non_Mn é 0 ~@—Non_Max
0 2 © & a0 100 0 b0} 40 60 a0 100
Fault Posttion (pcw. Reley setting) MW(MMW
(a) Minimum Operating time (b) Maximum Operating time
Figure 3.21 Operating time vs. Fault location of BC fault (SIR=10)
ABCG Fast with SR of 10 ABCG Falt with SR of 10
2 [ L & L 4 4 R
é 15 _§' = —e ¢ —
g 0 g
=1 =15 — N
g — * .- — - S — o
s 3 ——Adp_Mn s ~— Adp_Max
é 0 —a—Non_Mn g' g ~&— Non_Max
0 20 20 60 80 100 0 o) 0 &0 80 100
Fault Peaition (pu. Relay setting) Faut Position (p.u. Reley setting)
(a) Minimum Operating time (b) Maximum Operating time

Figure 3.22 Operating time vs. Fault location of ABCG fault (SIR=10)

Results shown in figures 3.19, 3.20, 3.21, 3.22 represent the relationship for the
operating time versus fault location with a SIR of 10. For AG and BCG faults, similar
results were found. The minimum operating time without the adaptive function is more
sensitive to the fault location and longer than that with the adaptive function. The
maximum operating time for both adaptive and non-adaptive functions is quite close even
though the former is still shorter than the latter. For BC and ABCG faults, a different

results are displayed. Both the minimum and maximum operating times without the
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adaptive function became less sensitive to the fault location. However, the operating

time is still longer than that with the adaptive function.

e SIR=100
AG Fadt with SRof 100 AG Fault with SR of 100
s k)
Ix = - =
g [ e
5 0 g 15
s 5 —e—Adp_Mn ® 10 —t— Ap_Niix
g— 0 —a—Non_Mn é’ : —a—Non_Max
0 20 r 60 %) 100 0 2 0 &0 a0 100
Fauit Pasition (.. Aeley setting) Fault Position (pu. Retsy setting)
(a) Minimum Operating time (b) Maximum Operating time

Figure 3.23 Operating time vs. Fault location of AG fault (SIR=100)
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(a) Minimum Operating time (b) Maximum Operating time

Figure 3.24 Operating time vs. Fault location of BCG fault (SIR=100)
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ABCG Fauit with SR of 100 ABCG Fault with SIRof 100
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Figure 3.26 Operating time vs. Fauit location of ABCG fault (SIR=100)
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Figure 3.25 Operating time vs. Fault location of BC fault (SIR=100)

With the SIR increased to 100, the adaptive function is no longer effective for AG
and BCG fault as shown in figures 3.23 and 3.24. The two curves are very close for both
the minimum and maximum operating time. The adaptive function is, however, still valid
for BC and ABCG faults as shown in figure 3.25 and 3.26. Further investigation is

needed to explain the above results.
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e Effectof SIR

The System Impedance Ratio (SIR), the ratio of source impedance behind the
distance relay to the line impedance the relay is protecting, could be high resulting from a
low line impedance (short lines), weak source behind the line, or a combination of both.
A higher SIR results in lower voltages and currents during faults if the higher ratio was
due to a higher source impedance rather than lower line impedance at the relay location.
The effects of SIR are summarized in a set of curves shown in Figure 3.27. These curves
describe the relationship between operating time and SIR with the fault location ranging
from 10% to 90% of the relay setting. Minimum and maximum operating times versus
SIR for an AG fault are drawn in (a) and (b) separately. For the same fault location, it can
be seen that the operating time increases with the increase of SIR under most
circumstances when the adaptive function is not activated. That is, a higher SIR slows the
operating speed of the relay. Slower response could make distance relay application
unacceptable when a fast speed relay is required by a transmission system, such as an

EHYV transmission system.
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Operation time vs SIR (AG Fault,Non_Adp)
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Figure 3.27 Operating time vs. SIR (system impedance ratio)
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3.4 Summary
Based on the above results, a summation of the effect of fault location, SIR and

adaptive relaying can be outlined as following:

L. If the adaptive function is not activated, the operating time for the GDDR relay to
detect a fault increases with the distance to the fault location, whereas, with the
adaptive function active, the operating time becomes less affected by the fault

location.

£

The System Impedance Ratio (SIR) affects the operating time of the GDDR relay

when the adaptive function is disabled. A higher SIR leads to a slower response time.

(V8]

The adaptive relay has the advantage of shortening the operating time to locate the

fault. It is able to adapt to fault direction, type and fault location.
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Chapter 4 Conclusions

[n this thesis, the development of a Graphical DSP-based Distance Relay (GDDR)
is presented.

Chapter | briefly introduces the concept of protective relaying, especially the
digital computer relays and adaptive relaying. [n Chapter 2, the developed graphical
block library of basic functions for distance relaying is described in detail. In addition, a
Graphical DSP-based Distance Relay (GDDR) was implemented based on the developed
block library. Laboratory tests were carried out to evaluate system performance, and find
the effects of System Impedance Ratio (SIR), fault types, and fault location in Chapter 3.

The tmpact of the adaptive features on fault pick-up time is also discussed.

The following is a summary of the conclusion:
l. The developed low-level hardware window’s driver for TMS320C30 DSP board can

effectively support the communication between a DSP and a host PC.

N

A graphical block diagram library of the basic functions for a distance relay was
successfully developed using commercial software: Visual C++, TI compiler and

Hypersignal RIDE.

(98}

A Graphical DSP-based Distance Relay (GDDR) for transmission line protection was
implemented based on the developed block diagram library.

4. The lab tests using PSCAD/EMTDC and the RTP verify that the developed GDDR

relay can perform promptly under fault conditions.
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5. The effects of fault location, fault type and the System Impedance Ratio (SIR) on the
tripping time using the developed GDDR relay were investigated.

6. The developed GDDR relay with adaptive relaying features can effectively reduce the
operation time in many fault conditions.

7. The relay engineers can configure a generic DSP-based relay hardware as a distance

relay with the developed library and GUI.

Future work

Some work is still required to extend the development of Graphical User Interface in
future. Additional blocks representing other relay features such as differential blocks,
harmonic restraint, fault location calculation etc. could be added to the developed library.

An interface for alternative DSP’s could also be developed.
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Appendix A: Tools used in this thesis
For the development of theGDDR relay, different commercial software and
hardware have to be employed together. In this work, Visual C++, Hypersignal
RIDE, DSP and its code compiler are extensively used. The features of some tools are

introduced in the following.

Hypersignal RIDE softw:ire package
Hypersignal RIDE is a complete visual design environment for real-time systems
development [14-15]. This tool can be used for a variety of exciting applications
which range from low-level DSP systems design & implementation to application
specific projects such as real-time instrumentation, data acquisition, control systems,
and more. Hypersignal RIDE has the following features:

e [t is a superset of the Hypersignal Block Diagram visual environment which adds
support for the design, implementation and analysis of real-time DSP algorithms and
systems. Figure | shows a typical interface for Hypersignal RIDE.

* Both real-time and simulation functions are available for graphically designing
custom DSP applications, and the custom blocks can be built, programmed and added
to the block library.

e The user interface is same for both simualted and real-time DSP block functions.
Both real-time (work done by DSP board) and simulated (work done by PC)
executables function within the same design, which allows for convenient conversion

between the PC simulations and real-time implementations.
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Appendix A: Tools used in this thesis

Figure | Typical Block Interface of RIDE

¢ [t supports a wide range of industry standard DSP/acquisition boards directly.
e A digital filter can be designed with the support of Hypersignal Filter Design tools.

e The execution mode adapted by RIDE is data flow control.

Hardware Driver Wizard

A window’s driver program is needed to handle the communication between
target DSP board and host PC. Hypersignal RIDE not only directly provides drivers for
some DSP boards, but also supports the development of a custom DSP driver with its
supplementary Driver Wizard, which facilitates many of the tasks associated with
creating a hardware driver. In this work, a custom DSP driver was built using the

Hypersignal Driver Wizard. This driver links DSP COFF object files, downloads code,
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Appendix A: Tools used in this thesis

data and parameters to the DSP memory, controls the execution of the DSP, and monitors

activity on the DSP, and uploads data to host PC.

TMS320C30 DSP board

The TMS320C30 is a 32-bit floating-point processor which is a member of the

TMS320C3x generation of DSPs from Texas Instruments [16-17]. The TMS320C30

optimizes speed by implementing signal processing functions in hardware, which

provides performance previously unavailable on a single chip: Typically, the

TMS320C30 can perform parallel multiply and ALU operations on integer or floating-

point data in a single cycle. A wide variety of system functions from host processor to

dedicated coprocessor are supported by the TMS320C30 due to its large address space,

multiprocessor interface, internally and externally generated wait states, two external

interface ports, two timers, serial ports, and multiple interrupt structure.
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Appendix B: Driver code for TMS320C30

/ﬁ
FILE: DSPMEM.C
PURPOSE: Provides routines that access the DSP board’s memory.
These routines provide single-address memory read/write,

block memory read/write, memory fill, and memory search.

This file provides routines for the Hypersignal for Windows
DSP board driver.

GLOBAL ROUTINES:

Function : DSPWriteShort()
Purpose : This function writes an short value to DSP memory

Function : DSPWriteLong()
Purpose : This function writes a long value to DSP memory

Function : DSPWriteFloat()
Purpose : This function writes a float value to DSP memory

Function : DSPWritelnst() // same as long
Purpose : This function writes an instruction value to DSP memory

Function : DSPReadShort()
Purpose : This function reads an short value from DSP memory

Function : DSPReadLong()
Purpose : This function reads a long value from DSP memory

Function : DSPReadFloat()
Purpose : This function reads a float value from DSP memory

Function : DSPReadlnst()
Purpose : This function reads an instruction value from DSP memory

v

Function : DSPReadFlash()
Purpose : This function reads a single FLASH memory address.

Function : DSPWriteShortBuf()
Purpose : This function writes a buffer of short values to DSP memory

Function : DSPWriteLongBuf{)
Purpose : This function writes a buffer of long values to DSP memory

Function : DSPWriteFloatBuf()
Purpose : This function writes a buffer of float values to DSP memory

Function : DSPWritelnstBuf()
Purpose : This function writes a buffer of instruction values to DSP memory
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Appendix B: Driver code for TMS320C30

Function : DSPWriteDataBuf()
Purpose : This function writes a buffer of data values to DSP memory

Function : DSPReadShortBuf()
Purpose : This function reads a buffer of short values from DSP memory

Function : DSPReadLongBuf()
Purpose : This function reads a buffer of long values from DSP memory

Function : DSPReadFloatBuf()
Purpose : This function reads a buffer of float values from DSP memory

Function : DSPReadInstBuf()
Purpose : This function reads a buffer of instruction values from DSP memory

Function : TestMem()
Purpose : Performs a test of DSP memory

Copyright (C) 1994,1998 Hyperception, All rights reserved

=%/

// Include Files
#include <windows.h>
#include <memory.h>
#include <conio.h>
#include "driver32.h"
#include "bddrvdsp.h"
#include "bddrv.h"
#include "board.h"
#include "entry.h"
#include "dsp.h"
#include "resource.h"
#include "drvutil.h"
#include "pcmem.h"
#include "address.h"

// External Data
extern BOOL bAbortMemTest; // set true when user aborts memory test

/I Memory Test Definitions
#define TOTAL_DATA_PATTERNS 3

#define DATA_UNIQUE 0
#define DATA_CHECKERBOARD L
#define DATA_ZERO 2

/! Define some constants used by lib functions //
#define ALL 1

static LPSTR DartaPatternStur{TOTAL_DATA_PATTERNS] = |
"unique memory patterns...",
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"checkerboard memory patterns...",
'zero memory patterns...”

/! Static Function Prototypes

static void NEAR PASCAL TestMemWrite(DSP_PARAM far *ipDSP, DWORD far *lpBuffer,
DWORD dwlen, DWORD dwAddr, int MemType,
int DataPattern);

static BOOL NEAR PASCAL TestMemRead(HANDLE hDlg, DSP_PARAM far *IpDSP. DWORD far

*[pBuffer,
DWORD dwLen, DWORD dwAddr, int MemType.
int DataPattern);

// Pragmas
#pragma code_seg(""dspmem")

17
// Function : DSPWriteShort()

!/ Purpose : This function writes a short value to DSP memory
{/ Parameters : IpDSP - Pointer to real-time block’s specific DSP

i dwAddr - destination DSP memory address
74 ShortVal - short to write
/! Meminfo - memory type

// Returns - Nothing.
/I/’

int FAR PASCAL DSPWriteShort(DSP_PARAM far *lpDSP, DWORD dwAddr, short ShortVal,
int MemlInfo)

3
/1 TODO: add code to download short value
if((MemInfo==PROG_MEM)|{(MemInfo=INV_MEM)){

if(lpDSP->bDSPRunStatus !'= DSPSTAT_HOLD)
reurn{DRV_FUNC_FAIL);

else

dwAddr{=0x30000:
SetAddr(lpDSP,dwAddr);//puts an address into the interface area address ports

CounterDis(IpDSP); /[Disable interface port address counter.

_outpw(ipDSP->wDataRegAddr,(ShortVal))://put the low 16bit of shortval in data register

1]
]

Vit
/I Function : DSPWriteLong()
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/f Purpose : This function writes a long value to DSP memory
/! Parameters : l[pDSP - Pointer to real-time block’s specific DSP

/! dwAddr - destination DSP memory address
1/ LongVal - long to write
/! Meminfo - memory type

!/ Returns  : Nothing.

i

int FAR PASCAL DSPWriteLong(DSP_PARAM far *lpDSP, DWORD dwAddr, long LongVal,
int MemInfo)

s

/1t TODO: add code to download long value
if((MemiInfo=—=PROG_MEM)|{(MemlInfo=INV_MEM))

if(lpDSP->bDSPRunStatus '= DSPSTAT_HOLD)
return(DRV_FUNC_FAIL);

else

dwAddri=0x30000;

SetAddr(lpDSP,dwAddr);//puts an address into the interface area address ports
CounterDis(ipDSP); //Disable interface port address counter.

_outpw(lpDSP->wDataRegAddr(LongVal&O0xffff)):
_outpw(lpDSP->wHiDataRegAddr,((LongVal&0xffff0000)>>16));

I/
/{ Function : DSPWriteFloat()

/f Purpose : This function writes a float value to DSP memory
// Parameters : IpDSP - Pointer to real-time block’s specific DSP

" dwAddr - destination DSP memory address
Vi FloatVal- float to write
1 Memlinfo - memory type

// Returns  : Nothing.

1/

int FAR PASCAL DSPWriteFloat(DSP_PARAM far *lpDSP, DWORD dwAddr,
float FloatVal, int MemInfo)

{
long DSPValue;

/! convert [EEE float to DSP float
DSPValue = [EEEtoDSP(FloatVal);

// TODO: add code to download float value
if((MemInfo==PROG_MEM)j(MemInfo=<INV_MEM))!

if(lpDSP->bDSPRunStatus = DSPSTAT_HOLD)
reum(DRV_FUNC_FAIL);

dwAddri=0x30000;
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SetAddr(lpDSP,dwAddr);//puts an address into the interface area address ports

CounterDis(lpDSP): //Disable interface port address counter.

_outpw(lpDSP->wDataRegAddr,(DSP Value&0x ffth)):
_outpw(IpDSP->wHiDataRegAddr,((DSP Value&0xffff0000)>>16));

/7
/{ Function : DSPWritelnst()

// Purpose : This function writes an instruction value to DSP memory
/! Parameters : IpDSP - Pointer to real-time block's specific DSP

7 dwAddr - destination DSP memory address
/" LongVal - long to write
i MemlInfo - memory type

// Retumms : Nothing.

1
void FAR PASCAL DSPWritelnst(DSP_PARAM far *IpDSP, DWORD dwAddr. DWORD dwMSW,

DWORD dwLSW, int MemlInfo)

s
t

//f TODO: add code to download instruction
ift(MemInfo=PROG_MEM)|{(MemiInfo=—=INV_MEM))}

if(lpDSP->bDSPRunStatus '= DSPSTAT_HOLD)
reurn(DRV_FUNC_FAIL);

else

dwAddr{=0x30000;

SetAddr(lpDSP .dwAddr);/puts an address into the interface area address ports
CounterEnb(IlpDSP); //Enable interface port address counter.

Autolnc(lpDSP);

_outpw(lpDSP->wDataRegAddr,(dwMS W &0xffff));
_outpw(IpDSP->wHiDataRegAddr,((dwMSW &O0x ffff0000)>>16));

—outpw(lpDSP->wDataReg Addr,(dwLSW&Oxfttf));
_outpw(lpDSP->wHiDataRegAddr,((dwLSW &Ox ffff0000)>>16));

]
H

l//’
// Function : DSPReadShort()

// Purpose : This function reads a short value from DSP memory
// Parameters : I[pDSP - Pointer to real-time block’s specific DSP
/ dwAddr - source DSP memory address

/" MemiInfo - memory type

// Returns  : Returns short value
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1
short FAR PASCAL DSPReadShort(DSP_PARAM far *lpDSP, DWORD dwAddr, int MemInfo)

1

!
/{ TODO: add code to upload short value
short  ShortVal;

ShortVal =0: // uploaded value
if((Meminfo=—=PROG_MEM)i{Meminfo==INV_MEM))!{

if(lIpDSP->bDSPRunStatus '= DSPSTAT_HOLD)
return(DRV_FUNC_FAIL);

else

dwAddri=0x30000;

SetAddr(lpDSP.dwAddr);//puts an address into the interface area address ports

CounterDis(IpDSP); //Disable interface port address counter.

ShortVal=(unsigned short)_inpw(lpDSP->wDataRegAddr);

return ((short)0);

]
H

f
// Function : DSPReadLong()
/f Purpose : This function reads a long value from DSP memory
/f Parameters : IpDSP - Pointer to real-time block’s specific DSP
1/t dwAddr - source DSP memory address
/" Meminfo - memory type
// Returns  : Returns long value
1/
long FAR PASCAL DSPReadLong(DSP_PARAM far *IpDSP, DWORD dwAddr. int MemInfo)
{

// TODOQ: add code to upload long value

long LongVal,c30exp;

LongVal =0; // uploaded value
if((MemInfo=—PROG_MEM)|[(MemInfo==INV_MEM)) {

if(lpDSP->bDSPRunStatus 1= DSPSTAT_HOLD)
reurn(DRV_FUNC_FAIL);

else
dwAddrj=0x30000;

SetAddr(lpDSP,dwAddr);//puts an address into the interface area address ports
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CounterDis(IpDSP); //Disable interface port address counter.

c30exp=(unsigned long)_inpw(lpDSP->wDataRegAddr):
LongVal=(((long)_inpw(lpDSP->wHiDataRegAddr))<<16)|c30exp;

return(OL):

4
1

14
// Function : DSPReadFloat()

// Purpose : This function reads a float value from DSP memory
// Parameters : ipDSP - Pointer to real-time block’ specific DSP
/7 dwAddr - source DSP memory address

i Memlinfo - memory type

// Returns : Returns float value

i

float FAR PASCAL DSPReadFloat(DSP_PARAM far *IpDSP, DWORD dwAddr. int MemlInfo)

float FloatVal;
long LongVal.c30exp;

/1 TODO: add code to upload float value
[LongVal = 0; // uploaded value

if((MemInfo=—=PROG_MEM){{(MemInfo=INV_MEM))/

if(lpDSP->bDSPRunStatus '= DSPSTAT_HOLD)
return{DRV_FUNC_FAIL);

else

dwAddr{=0x30000;
SetAddr(lpDSP,dwAddr);//puts an address into the interface area address ports
CounterDis(lpDSP); //Disable interface port address counter.
c30exp=(unsigned short)_inpw(lpDSP->wDataRegAddr);
LongVal=(((long)_inpw(lpDSP->wHiDataRegAddr))<<16)(c30exp;
// convert to IEEE float

FloatVal = (float)DSPtolEEE(LongVal);

return (FloatVal);

?
1

/!
// Function : DSPReadInst()

/l Purpose : This function reads a instruction value from DSP memory
/f Parameters : I[pDSP - Pointer to real-time block’s specific DSP

1/ dwAddr - source DSP memory address

" Memlinfo - memory type

// Returns : Returns long value

1t

===) University of Manitoba -86-
=ii’"  Electrical & Computer Engineering

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix B: Driver code for TMS320C30

DWORD FAR PASCAL DSPReadInst(DSP_PARAM far *IpDSP, DWORD dwAddr,
DWORD far *dwMSW, int MemiInfo)

{// clear MSW
long Low;
*dwMSW = 0UL;
if((MemInfo—=—PROG_MEM){(MemInfo=INV_MEM))}

if(lpDSP->bDSPRunStaws !'= DSPSTAT_HOLD)
return(DRV_FUNC_FAIL);

else

dwAddr|=0x30000:
SetAddr(lpDSP.dwAddr)://puts an address into the interface area address ports
CounterDis(IpDSP); //Disable interface port address counter.

Low=(unsigned long)_inpw(lpDSP->wDataRegAddr);
*dwMS W=(((long)_inpw(lpDSP->wHiDataRegAddr))<<[6)|Low:

return(OL);

1t
!/ Function : DSPReadFlash()
// Purpose : This function reads a single FLASH memory address.
/f Parameters : IpDSP - Pointer to real-time block’s specific DSP
/" dwAddr - source DSP memory address
// Retums : Nothing.
I/
DWORD FAR PASCAL DSPReadFlash (DSP_PARAM far *lpDSP, DWORD dwAddr)
13

// TODO: add code to read flash memory

DWORD dwLowAddr, dwFlashMemAddr;

SetAddr(lpDSP,dwAddr);//puts an address into the interface area address ports
CounterDis(lpDSP); //Disable interface port address counter.
dwLowAddr=(unsigned short)_inpw(lpDSP->wDataRegAddr);
dwFlashMemAddr=(((long)_inpw(lpDSP->wHiDataRegAddr))<<i6){dwLowAddr;

return((DWORD)0);
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//
// Function : DSPWriteShortBuf()

/f Purpose : This function writes a buffer of short values to DSP memory
/f Parameters : IpDSP - Pointer to real-time block’s specific DSP

" dwAddr - destination DSP memory address
! dwlen - length of data buffer

/i IpShortBuf- pointer to short data buffer

/" Memlnfo - memory type

// Returns - Nothing.

7

int FAR PASCAL DSPWriteShortBuf{ DSP_PARAM far *IpDSP, DWORD dwAddr,
DWORD dwLen, short huge *IpShortBuf, int MemlInfo)

]
// TODO: add code to download short buffer
DWORD count=0;

if((MemInfo==PROG_MEM){|(MemInfo=INV_MEM))4

if(ilpDSP->bDSPRunStatus = DSPSTAT_HOLD)
reurn{DRV_FUNC_FAIL);

else
dwAddr{=0x30000;

SetAddr(ipDSP,dwAddr)://puts an address into the interface area address ports
CounterEnb(lpDSP); //Enable interface port address counter.
AutoInc(lpDSP);

while(count<dwl_en){
_outpw(lpDSP->wDataRegAddr,(*(lpShortBuf+count)));

coung++;

/!
/f Function : DSPWriteLongBuf()

// Purpose : This function writes a buffer of long values to DSP memory
// Parameters : [pDSP - Pointer to real-time block’s specific DSP

/7 dwAddr - destination DSP memory address
i dwlen - length of data buffer

/7 IpLongBuf- pointer to long data buffer

/! Meminfo - memory type

// Returns : Nothing.

1

int FAR PASCAL DSPWriteLongBuf(DSP_PARAM far *IpDSP, DWORD dwAddr,
DWORD dwLen, long huge *lpLongBuf,

int MemInfo)
i)
// TODO: add code to download long bufter
DWORD count=0;
/* if((MemInfo==PROG_MEM){[(MemInfo=INV_MEM))!

if(lpDSP->bDSPRunStatus = DSPSTAT_HOLD)
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returtf{ DRV_FUNC_FAIL);
else */

dwAddr{=0x30000;

SetAddr(lpDSP,dwAddr);//puts an address into the interface area address ports
CounterEnb(IpDSP); /lEnable interface port address counter.

Autolnc(lpDSP);

while(count<dwLen){
_outpw(lpDSP->wDataRegAddr,( *(lpLongBuf+count)&0xfFff));
_outpw(ipDSP->wHiDataRegAddr,((*(IpLongBuf+count)&0xffff0000)>>16));

count++;

t
'

II/
// Function : DSPWriteFloatBuf()

/f Purpose : This function writes a buffer of float values to DSP memory
/! Parameters : I[pDSP - Pointer to real-time block’s specific DSP

" dwAddr - destination DSP memory address
i dwLen - length of data buffer

/" IpFloatBuf- pointer to float data buffer

" MemiInfo - memory type

// Retums : Nothing.
{f
int FAR PASCAL DSPWriteFloatBufiDSP_PARAM far *lpDSP, DWORD dwAddr,
DWORD dwLen, float huge *IpFloatBuf,
int MemlInfo)

{
// TODO: add code to download float buffer

long *lpDSPBUuf;
DWORD count=0;

i{(Meminfo=PROG_MEM)jj(MemInfo==INV_MEM))}

if(lpDSP->bDSPRunStatus '= DSPSTAT_HOLD)
return{DRV_FUNC_FAIL);

else

dwAddr{=0x30000;

SetAddr(lpDSP,dwAddr);//puts an address into the interface area address ports
CounterEnb(lpDSP); //Enable interface port address counter.

Autolnc(lpDSP);

while(count<dwLen){

*(lpDSPBuf+count) = [EEEteDSP(*(IpFloatBuf+count));
_outpw(IpDSP->wDataRegAddr,(*(lpDSPBuf+count)&0xffft));
—outpw(IpDSP->wHiDataRegAddr,((*(lpDSPBuf+count)&0xffff0000)>>16));

count++;
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{f
// Function : DSPWritelnstBuf()

// Purpose : This function writes a buffer of instruction values to DSP memory
// Parameters : IpDSP - Pointer to real-time block’s specific DSP

1" dwAddr - destination DSP memory address
/" dwLen - length of data buffer

7 IpLongBuf- pointer to long data buffer

it Meminfo - memory type

/{ Returns  :. Nothing.
1
void FAR PASCAL DSPWritelnstBuf(DSP_PARAM far *IpDSP, DWORD dwAddr,
DWORD dwLen, void huge *IpLongBuf,
int Memlinfo)

// TODO: add code to download instruction buffer
DWORD count=0;

long *ipDspBuf;
IpDspBuf=(long *)lpLongBuf;
if{(MemInfo=—PROG_MEM)|[(MemlInfo=INV_MEM))/

if(lpDSP->bDSPRunStatus = DSPSTAT_HOLD)
reeurn{DRV_FUNC_FAIL);

else

dwAddr[=0x30000;

SetAddr(lpDSP,dwAddr);//puts an address into the interface area address ports
CounterEnb(lpDSP); //Enable interface port address counter.
Autolnc(lpDSP);

while(count<dwLen)/

_outpw(lpDSP->wDataRegAddr,(*(IpDspBuf+count)&0xfFff));
_outpw(lpDSP->wHiDataRegAddr,(( *(IpDspBuf+count)&0x ffff0000)>>16));

count—+;
1]
1]

]
5

If
// Function : DSPReadShortBuf()

// Purpose : This function reads a buffer of short values from DSP memory
// Parameters : 1pDSP - Pointer to real-time block’s specific DSP

i dwAddr - source DSP memory address
H dwLen - length of data buffer

/ IpShortBuf- pointer to short data buffer
/t Memlinfo - memory type

// Returns  : Nothing.
1/
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int FAR PASCAL DSPReadShortBuf{fDSP_PARAM far *IpDSP, DWORD dwAddr,
DWORD dwLen, short huge *IpShortBuf, int MemInfo)
J
// TODO: add code to upload short buffer
DWORD count=0;

if((MemiInfo=—=PROG_MEM)|[(MemInfo=INV_MEM))}

if(lpDSP->bDSPRunStatus '= DSPSTAT_HOLD)
return{DRV_FUNC_FAIL):

else

dwAddri=0x30000:

SetAddr(IpDSP.dwAddr)://puts an address into the interface area address ports

CounterEnb(ipDSP): //Enable interface port address counter.
Autolnc(ipDSP);

while(count<dwlLen) {
*(IpShortBuf+count)=(unsigned short)_inpw(lpDSP->wDataRegAddr);

count++:

return(0);

1
s

1/
/l Function : DSPReadLongBuf()

// Purpose : This function reads a buffer of long values from DSP memory
// Parameters : IpDSP - Pointer to real-time block’ specific DSP

" dwAddr - source DSP memory address
/" dwLen - length of data buffer

i IpLongBuf- pointer to long data buffer
" Meminfo - memory type

// Returns  : Nothing.

/f

int FAR PASCAL DSPReadLongBuf{DSP_PARAM far *pDSP, DWORD dwAddr,
DWORD dwLen, long huge *lpLongBuf, int MemlInfo)

s
/1 TODO: add code to upload long buffer

DWORD count=0;
long low=0, high=0;
/* if((MemInfo==PROG_MEM)||(MemInfo=—=INV_MEM))/{

if(lpDSP->bDSPRunStatus = DSPSTAT_HOLD)
retum(DRV_FUNC_FAIL);

else */

dwAddri=0x30000;
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SetAddr(lpDSP,dwAddr);/puts an address into the interface area address ports

CounterEnb(lpDSP); //Enable interface port address counter.
Autolnc(lpDSP);

while(count<dwlen) {
low=(unsigned short)_inpw(lpDSP->wDataRegAddr);
high=(((long)_inpw(lpDSP->wHiDataRegAddr))<<I16)|low;
*(lpLongBuf+count)=high;
count++;

return{0);

t
1]
/1
/! Function : DSPReadFloatBuf()

// Purpose : This function reads a buffer of float values from DSP memory
/I Parameters : I[pDSP - Pointer to real-time block’s specific DSP

7 dwAddr -source DSP memory address
i dwlen - length of data buffer

/" IpFloatBuf- pointer to float data buffer
// MemiInfo - memory type

/l Retums : Nothing.

1/

int FAR PASCAL DSPReadFloatBuf(DSP_PARAM far *lpDSP. DWORD dwAddr,
DWORD dwLen, float huge *IpFloatBuf, int MemInfo)

3

{// TODO: add code to upload float buffer
DWORD count=0;
long low=0, high=0;
long *IpLongBuf;

if((MemInfo==PROG_MEM)||(MemInfo—=INV_MEM)){

if(lpDSP->bDSPRunStatus != DSPSTAT_HOLD)
return(DRV_FUNC_FAIL);

else

dwAddri=0x30000;

SetAddr(lpDSP,dwAddr);//puts an address into the interface area address ports
CounterEnb(lpDSP); //Enable interface port address counter.
Autolnc(ipDSP);

while(count<dwLen) §
low=(unsigned short)_inpw(lpDSP->wDataRegAddr);
high=(((long)_inpw(lpDSP->wHiDataRegAddr))<<!6)|{low;
*(lpLongBuf+count)=high;

*(lpFloatBuf+count)=(float) DSPtolEEE(*(lpLongBuf+count));
counti+;

]
[}

return(0);
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1]
¥

7
/! Function : DSPReadInstBuf{)

/f Purpose : This function reads a buffer of long values from DSP memory
// Parameters : []pDSP - Pointer to real-time block’s specific DSP

1 dwAddr -source DSP memory address
i dwlen - length of data buffer

1" IpLongBuf- pointer to long data buffer
/ Meminfo - memory type

/f Returns - Nothing.

it

void FAR PASCAL DSPReadInstBuf(DSP_PARAM far *IpDSP, DWORD dwAddr,
DWORD dwLen, void huge *IpLongBuf, int MemlInfo)

/1 TODQO: add code to upload instruction buffer
long *IpDspBuf;
DWORD count=0;
long low=0, high=0;

if((Meminfo==PROG_MEM)||(MemInfo==INV_MEM)){

if(lpDSP->bDSPRunStatus '= DSPSTAT_HOLD)
return(DRV_FUNC_FAIL);

else

dwAddrj=0x30000;

SetAddr(IpDSP,dwAddr);//puts an address into the interface area address ports

CounterEnb(IpDSP); //Enable interface port address counter.
Autolnc(lpDSP);

while(count<dwLen) {
low=(unsigned short)_inpw(lpDSP->wDataRegAddr);
high=(((long)_inpw(lpDSP->wHiDataRegAddr))<<!6)jlow;
*(lpDspBuf+count)=high;

count++;

2
)

IpLongBuf=(void*)ipDspBuf;
return(0);

t
1

/1
/f Function : TestMemWrite()
// Purpose : Writes test data pattern to target memory

/{ Parameters : I[pDSP - pointer to DSP parameter structure
/" IpBuffer - pointer to data buffer
/! dwLen - length of buffer
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I dwAddr - current target memory address
i MemType - target memory type
/" DataPattern - data pattern code

// Returns : Nothing.
Vs
static void NEAR PASCAL TestMemWTrite(DSP_PARAM far *IpDSP. DWORD far *ipBuffer.
DWORD dwEen, DWORD dwAddr, int MemType,
int DataPattern)

DWORD dwindex;
DWORD dwValue;

/! write data into buffer based on data pattemn type
switch (DataPattern)

case DATA_UNIQUE:
/1 write address value into memory
for (dwindex=0; dwindex<dwl.en; dwindex++) |
IpBuffer{[dwindex] = dwAddr + dwindex;

break;

case DATA_CHECKERBOARD:
/1 write checkerboard value into memory
for (dwindex=0; dwindex<dwLen; dwindex++) |

IpBuffer[dwIndex] = dwValue;

]

break;

case DATA_ZERO:
1/ write 0 10 buffer
for (dwIndex=0; dwlndex<dwLen; dwindex++) |
IpBuffer[dwindex] = OUL:
]
break;

/I write buffer to target memory
IpDSP->TargetWriteLongBuf(lpDSP,dwAddr.dwLen,ipBuffer MemType);

]
}

1/
// Function : TestMemRead()
/f Purpose : Reads test data pattern from target memory

/l Parameters : hDlg - handle of test status modeless dialog box
! IpDSP - pointer to DSP parameter structure

" IpBuffer - pointer to data buffer

" dwLen - length of buffer

/! dwAddr - current target memory address

/f MemType - target memory type

1" DataPattern - data pattern code

// Returns : Memory read result (PASS/FAIL)
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!

static BOOL NEAR PASCAL TestMemRead(HANDLE hDlg, DSP_PARAM far *lpDSP, DWORD far
*IpBuffer,

DWORD dwlLen, DWORD dwAddr, int MemType,

int DataPattern)

DWORD dwindex;
DWORD dwValue;

DWORD dwExpect;

BOOL TestStatus = TRUE;

int  MBResponse;

char ErrSu[128];

/f read data from buffer
IpDSP->TargetReadLongBuf(ipDSP dwAddr.dwlLen lpBuffer MemType):

// scan through memory buffer validating data
for (dwindex=0; dwindex<dwLen; dwlndex++)

/7 get expected data pattern based on data pattern type
switch (DataPartern) |

case DATA_UNIQUE:
/l expected value is memory address
dwExpect = dwAddr + dwindex;
break;

case DATA_CHECKERBOARD:
/I expected value is checkerboard based on memory address
dwExpect = (DWORD)(0x55555555UL << ((dwAddr+dwindex) & 1));
break;

case DATA_ZERO:
// expected value is 0
dwExpect = QUL;
break; ) -

// check if memory value is correct

if ((dwValue = [pBuffer{dwindex]) != dwExpect) {
// set fail status
TestStatus = FALSE;

/I indicate failure to user
wsprintf{ErrStr,"Memory read error at 0x%lx. The value 0x%lx which was read should be 0x%lx.",
(dwAddr+dwlndex),dwValue,dwExpect);
MessageBox(hDlg,ErrStr,"Memory Test Error" MB_OKIMB_ICONEXCLAMATION);
MBResponse = MessageBox(hDlg,"Do you want to continue the memory test?","Memory Test”,
MB_ICONQUESTIONIMB_YESNO);
if (MBResponse==<IDNO) |
// set global abort flag
bAbortMemTest = TRUE;
return(TestStatus);
]
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// return test status
return (TestStatus):

/7
/ Function : TestMem()
// Purpose : Performs a test of the DSP memory

// Parameters : hDlg - handle of configuration dialog box
1 hTestModeless - handle of test status modeless dialog box
/" IpDSP - pointer to DSP parameter structure

// Returns : Nothing.
1/
BOOL FAR PASCAL TestMem(HANDLE hDlg, HANDLE hTestModeless, DSP_PARAM far *lpDSP)
s

BOOL bMemoryTest = TRUE:; // default to pass, if error change to FALSE // memory
size in kWords
BOOL bCurrMemTest:
DWORD dwTotalNumWords;
DWORD dwNumWordsDone;
DWORD dwSectWords;
DWORD dwSectWordsRemain;
DWORD dwStartAddr;
DWORD dwCurrAddr;
DWORD dwTotalBuffSize;
DWORD dwCurrBuffSize;
HANDLE hBuffer;
DWORD far *|pBuffer;
int Percent;
int DataPattern:
MSG msg;
char StatusSa{80];
WORD wSectNum; /{ section number counter
SECTION_PARAM *lpDSPSections; // pointer to sections
int MemType;

/I get pointer to DSP sections
if ((lpDSPSections = (SECTION_PARAM FAR *)GlobalLock(lpDSP->hDSPSections))=NULL)
reurn(FALSE);

/! determine total number of addresses to test

dwTotalNumWords = OUL;

for (wSectNum=0; wSectNum<ipDSP->wNumSections; wSectNum-++) {
dwTotalNumWords += [pDSPSections{wSectNum].dwLength;

]
L]

// check if no memory
if (dwTotalNumWords = 0) return(bMemoryTest);

/! allocate memory buffer

// determine buffer size (5% or 2048; whichever is smaller)

if ((dwTotalBuffSize = (dwTotalNumWords / 20)) > 2048UL) dwTotalBuffSize =2048UL;
if (dwTotalBuffSize == 0) dwTotalBuffSize = dwTotaINumWords;

- - 2 -9 -
S az|l University of Manitoba ¢
i Etectricat & Computer Engineering

L3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



l
\

Appendix B: Driver code for TMS320C30

if (hBuffer =
GlobalAlloc(GMEM_MOVEABLE|GMEM_ZEROINIT,(DWORD)sizeoff DWORD)*dwTotalBuffSize))
== NULL) {
MessageBox(hDlg,"Memory test buffer memory could not be allocated.”,"Memory Test
Error" ,MB_OK|MB_ICONEXCLAMATION);
return(FALSE);
if ((IpBuffer = (DWORD far *)GlobalLock(hBuffer)) == NULL)
MessageBox(hDlg,"Memory test buffer memory could not be locked.”,"Memory Test
Error" MB_OK{MB_ICONEXCLAMATION);
return{(FALSE);

// loop through all test data patterns
for (DataPattern = 0; DataPattern < TOTAL_DATA_PATTERNS: DataPattern+) !

/# write data from memory
wsprintf(StatusStr," Writing %s" ,DataPatternSu[DataPattern]):
SetDlgltemText(hTestModeless.IDC_TESTSTATUS StatusStr);

/f clear number of addresses done
dwNumWordsDone = QUL;

/1 write data to all all sections
for (wSectNum=0: wSectNum<IpDSP->wNumSections: wSectNum-++) }

/I get start address and number of words in section
dwStartAddr = [pDSPSections[wSectNum].dwFirstAddr;
dwSectWords = [pDSPSections[wSectNum].dwLength;

// don't corrupt the monitor program which is located at 0x000000
if ((dwStartAddr >= 0x900000) &&
(dwStartAddr <= 0x900040)) continue;

/! initialize current address
dwCurrAddr = dwStartAddr:

// initialize section words remaining count
dwSectWordsRemain = dwSectWords;

// get memory type
MemType = (int)lpDSPSections[wSectNum].bMemType;

/7 set test title
SetDlgltemText(hTestModeless,IDC_MEMTYPE, IpDSPSections[wSectNum].SectName);

/1 loop until all of section is tested
while (dwSectWordsRemain) }

/! determine buffer size for next write (limit to total buffer size)
dwCurrBuffSize = dwSectWordsRemain;
if (dwCurrBuffSize > dwTotalBuffSize) dwCurrBuffSize = dwTotalBuffSize;

/! write memory
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TestMemWrite(lpDSP IpBuffer,dwCurrBuffSize. dwCurrAddr.MemType.DataPattern);

// update current address
dwCurrAddr += dwCurrBuffSize:

/I update number of section words remaining
dwSectWordsRemain = dwCurrBuffSize;

/f update total number of words done
dwNumWordsDone += dwCurrBuffSize;

/I update/display percent done
Percent = (int)(((float)dwNumWordsDone / { float)dwTotalNumWords) * 100.0f);
SetDigltemlint(hTestModeless. [DC_TESTPERCENT Percent, FALSE):

/! check if user abort
if (bAbortMemTest) return (bMemoryTest);

// allow other Window's messages to be processed

if (PeekMessage(&msg, NULL,0,0,PM_REMOVE)) ¢
TranslateMessage{&msg);
DispatchMessage(&msg);

]

SetDigltemInt(hTestModeless.[IDC_TESTPERCENT,100,FALSE):

// read data from memory
wsprintf(StatusStr,”"Reading %s" ,DataPatternStr{DataPattern]);
SetDigltemText(hTestModeless,IDC_TESTSTATUS,StatusStr);

/l clear number of addresses done
dwiNumWordsDone = QUL ;

/l read data from all sections
for (wSectNum=0; wSectNum<IpDSP->wNumSections; wSectNum-++) {

/1 get start address and number of words in section
dwStartAddr = IpDSPSections{wSectNum].dwFirstAddr;
dwSectWords = IpDSPSections{wSectNum].dwLength:

/ don't corrupt the monitor program which is located at 0x000000

if ((dwStartAddr >= 0x900000) &&
(dwStartAddr <= 0x900040)) continue;

// initialize current address
dwCurrAddr = dwStartAddr;

// initialize section words remaining count
dwSectWordsRemain = dwSectWords;

/! get memory type
MemType = (int)lpDSPSections{wSectNum].bMemType;

// set test title
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SetDigltemText(hTestModeless IDC_MEMTYPE IpDSPSections{wSectNum].SectName);

/I loop until all of section is tested
while (dwSectWordsRemain) {

// determine buffer size for next write (limit to total buffer size)
dwCurrBuffSize = dwSectWordsRemain:
if (dwCurrBuffSize > dwTotalBuffSize) dwCurrBuffSize = dwTotalBuffSize;

/l read memory
bCurrMemTest =
TestMemRead(hTestModeless.lpDSP IpBuffer,dwCurrBuffSize,dwCurrAddr, MemType, DataPattern);

// set memory test flag if it is true (won't allow FAIL to be
/I overwritten by a section memory test PASS)
if (bMemoryTest) bMemoryTest = bCurrMemTest;

// update current address
dwCurrAddr += dwCurrBuffSize;

// update number of section words remaining
dwSectWordsRemain = dwCurrBuffSize;

// update total number of words done
dwNumWordsDone += dwCurrBuffSize;

f/ update/display percent done
Percent = (int)(((float)dwNumWordsDone / (float)JdwTotalNumWords) * 100.0f);
SetDlgltemInt(hTestModeless,IDC_TESTPERCENT, Percent, FALSE});

/! check if user abort

if (bAbortMemTest) ¢
// unlock memory
FreeGlobaiMemory(hBuffer);
GlobalUnlock(lpDSP->hDSPSections);

// return memory test result
return (bMemoryTest);

/ allow other Window's messages to be processed

if (PeekMessage(&msg, NULL,0,0,PM_REMOVE)) {
TranslateMessage(&msg);
DispatchMessage(&msg);

/I unlock memory
FreeGlobalMemory(hBuffer);
GlobalUnlock(IlpDSP->hDSPSections);

// return memory test result
return (bMemoryTest);

-99-

“===]l University of Manitoba
W37V Eractrical & Computer Engineering

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix B: Driver code for TMS320C30

/*

* Function SetAddr()

*

* Purpose  : puts an address into the interface area address ports.
* Parameters : the 24 bit address.

* Returns - none.

*/

void FAR PASCAL SetAddr(DSP_PARAM far *ipDSP.DWORD dwAddr)

4
]

_outpw(lpDSP->wAddrRegAddr, (dwAddr&OxFFFF));
_outpw(lpDSP->wHiAddrRegAddr, ((dwAddr&0xFF0000)>>16));

/%

* Function CounterDis()

*

* Purpose  : Disable interface port address counter.

* Parameters : none.

* Returns  : Value of Ctrl Reg variable for current board.

*/

unsigned short FAR PASCAL CounterDis(DSP_PARAM far *IpDSP)

J
t
unsigned short ControlVal;

ControlVal=IpDSP->wControlReg;
ControlVal|=0x0004: /* ensure bit2 i */

_outpw(IpDSP->wControlRegAddr.ControlVal); /* put word out to [/O port. */
return (ControlVal);

/ *
* Function CounterEnb()
E 3

* Purpose : Enable interface port address counter.

* Parameters : none.

* Returns  : Value of Ctrl Reg variable for current board.

*/

unsigned short FAR PASCAL CounterEnb(DSP_PARAM far *IpDSP)

{
unsigned short ControlVal;

ControlVal=IpDSP->wControlReg;
ControlVal&=0xFFFB; /* ensure bit 2 low */

_outpw(IlpDSP->wControlRegAddr.ControlVal); /* put word out to /O port. */
return (ControlVal);
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/*

* Function Autolnc()

*

* Purpose  : Put interface port address counter to increment mode.
* Parameters : none.

* Returns  : Value of Curl Reg variable for current board.

*/

unsigned short FAR PASCAL Autolnc(DSP_PARAM far *IpDSP)

J
1

unsigned short ControiVal:

ControlVal=lpDSP->wControlReg;
ControlVal&=0xFFF7; /* ensure bit 3 low */

_outpw(lpDSP->wControlRegAddr.ControlVal); /* put word out to IO port. */
return (ControiVal);

]
’

/*

* Function AutoDec()
*x

* Purpose  : Put interface port address counter to decrement.

* Parameters : none.

* Returns  : Value of Ctrl Reg variable for current board.

*/

unsigned short FAR PASCAL AutoDec(DSP_PARAM far *lpDSP)

3
'

unsigned short ControlVal;

ControlVal=lpDSP->wControiReg;
ControlVal[=0x0008; /* ensure bit 3 hi */

_outpw(lpDSP->wControlRegAddr,ControlVal); /* put word out to /O port. */
return (ControlVal);
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Appendix C: Data acquisition code

// FILE NAME : _DAQU.c
// BLOCK NAME: Daqu

/' GROUP NAME: A/D functions

//

// PURPOSE : Provides the real-time block’s DSP C source code.

/!

/" Hypersignal Block Wizard Version 4.00.14 Auto-Generated Block
/!

// Number of [nputs : 0
/7 Number of Outputs: 6

/1 Creation Date: Wed - {4 February 2001
/1 Creation Time: 01:27 PM

#include "_daqu.h"

* *
r* Optional real-time block interrupt routine */
* */

/* If this routine is activated, it will be called in response to a selected */
/* DSP interrupt. If this routine in not activated, the main block routine */
/* will be called in response to a selected DSP interrupt. */

/* */

/*

void DAQU_INT(PARAMS *pPtr)

4
1

*/
void c_int0 | {(PARAMS *pPrr)

)
!

unsigned int index;
float t;

Dis_Interrupts();

Buffer Put(A2D(0)*0.00244 14*C_Gain);
Buffer_Put(A2D(2)*0.0024414*C_Gain);
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Buffer_Put(A2D(4)*0.0024414*C_Gain);
Buffer_Put(A2D(6)*0.0024414*V_Gain);
Buffer_Put(A2D(7)*0.00244 14*V_Gain);
Buffer_Put(A2D(8)*0.0024414*V_Gain);

flag=1;
if{ HjxHead==HjxTail) Buffer_Full=1;

Clear_Intr_Flag();
En_Interrupts();

r* *
¥ Optional real-time block initialization routine */
/* */

/* If this routine is activated, it will be called one time before the main */
/* application begins. This allows for any required software or hardware  */

/* nitialization to be performed before the block executes. */
I* */

void DAQU_INIT(PARAMS *pPtr)

Dis_Interrupts();
Enable_Intl();

Set_Sample_Rate(pPtr->_Sampling_Rate);
Set_Filter_Cutoff(1920);
Clear_Buffer(pPtr->FramesizeOut0*6);
C_Gain=pPtr->_Gain_Current;
V_Gain=pPtr->_Gain_Voltage;

/* FltCounter=0;*/

En_Interrupts();

/* */
* Optional real-time block stop routine */
* */

/* If this routine is activated, it will be called whenever the block diagram */

/* worksheet’s execution is stopped. Blocks that deal with hardware may need */
/* this routine to stop the hardware’s execution. */

/* */

void DAQU_STOP(PARAMS *pPtr)
{
Dis_Interrupts();

-103-
University of Manitoba
Electrical & Computer Engineering

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix c: Data acquisition code

/* */
/* Optional real-time block restart routine */
r* *

/* If this routine is activated, it will be called whenever a block diagram */
/* worksheet is executed after being stopped. Blocks that deal with hardware */

/* may need this routine to restart the hardware s execution. */
/* g/

void DAQU_RESTART(PARAMS *pPtr)

s
t

En_Interrupts();

]
s

/% */
* Real-time block routine */
/* */

/* This is the main block routine. It is called during each loop of the main */
/* application. If an interrupt is selected, and the interrupt routine above */
/* is not activated, this routine will be called in response to the selected */
/* interrupt instead of during the main application loop. */

/* o

void DAQU(PARAMS *pPtr)

s
'

unsigned int index;  /* index for frame processing loop */
unsigned int HjxStart;
unsigned int HijxEnd;

Dis_Interrupts();

if(pPtr->SyncOut) *(pPtr->SyncOut)=FALSE;

if((Buffer_Full==1)&&(flag=1))

$

1
HjxStart=(HjxTail-HjxHead)/6;
HjxEnd=HjxHead/6;

for(index=0;index<HjxStart;:index++)

J
[}

*(pPtr->PtrOutO+index) =HjxBuffer{HjxHead+index*6];

*(pPtr->PtrOutl+index) =HjxBuffer{HjxHead+index*6+1};
*(pPtr->PtrOut2+index) =HjxBuffer[HjxHead+index*6+2];
*(pPtr->PtrOut3+index) =HjxBuffer(HjxHead+index*6+3];
*(pPtr->PtrOutd+index) =HjxBuffer[HjxHead+index*6+4];
*(pPtr->PtrOut5+index) =HjxBuffer[HjxHead+index*6+5];

\

]
for(index=0;index<HjxEnd;index++)
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-

*(pPtr->PtrOut0+HjxStart+index)=HjxBuffer{index*6];
*(pPtr->PtrOut 1+HjxStart+index)=HjxBuffer[index*6+1;
*(pPtr->PtrOut2 +HjxStart+index)=HjxBuffer[index*6+2];
*(pPir->PurOut3+HjxStart+index)=HjxBuffer{index*6+3];
*(pPtr->PtrOut4+HjxStart+index)=HjxBuffer{index*6+4]:
*(pPtr->PtrOut5+HjxStart+index)=HjxBuffer{index*6+5];

]

if(pPtr->SyncOut) *(pPtr->SyncOut)=TRUE;

flag=0;

En_Interrupts();

]
[}

float Set_Timer(int n, float freq, long mode)

§
]

long period:
long *timer =n ? Timer!l : TimerO:

if (mode & CLK_MODE)

freq *=2:
period = Timer_Base_Freq/freq+0.5;

timer{ [imerPeriod] = period;
timer{TimerGlobalCtrl] = SRC_INT | mode | FUNC_TIMER { RST_START;

return Timer_Base_Freq/period;

/*******t#t**t##ttt*##*###tt#t#‘tt#‘#ttt*‘t#tt#tt‘t‘#tt#‘t‘t‘tt‘tt“t####t*\
\***#t****t**t**ttt##‘tt‘#t‘#t*tttttttt*ttt“t#tt‘*#ttt**t#ttt#‘ttt##tt*t‘t/

/* float Base_Frequency; */

void Set_Sample_Rate(float sample_rate)

i
float Sample_Rate;

Sample_Rate = Set_Timer(l, sample_rate, PLS_MODE | INV);
/*using timerl for A/D conversion because TimerQ doesn
work for PLS_MODE®*/

void Set_Filter_Cutoff{float filter_cutoff)
{
float Filter_Curoff:
float filter_freq = 100*filter_cutoff;
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Filter_Cutoff = Set_Timer(0, filter_freq, CLK_MODE);
/*It was Timer( before*/

/* Read the converted data from the address of ADC converter*/
long A2D(int 1)
b

retum ADC[i]>>20;

/* Functions used to enable or disable interrupt */

void Enable_Intl{void)

{
asm(" OR 2hJIE");

void Disable_Intl(void)
1

asm(" AND ~2h, [E");
i

void En_Interrupts(void)

asm(” OR 2000h, ST");

)
]

void Dis_Interrupts(void)

¥
i

asm(" AND ~2000h, ST");

void Clear_Intr_Flag(void)

s
'

asm(" AND ~2h, [F");

3
)

/*Buffer control functions*/

void Clear_Buffer(long buf_len)

4
3

HjxHead = 0;
HjxTail = buf_len;
Buffer_Full=0;
flag=0;

void Buffer_Put(float z)
¥

t

if(HjxHead!=HjxTail)
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-

HjxBuffer[HjxHead]=z;
HjxHead++;

HjxHead=0;
HjxBuffer[HjxHead]=z;
HjxHead=1;

int Buffer_Empty(void)

return HjxHead=HjxTail;
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